浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
[ "王洪浩(1990-),男,黑龙江牡丹江人,博士研究生,副研究员,2014年于哈尔滨工业大学获得硕士学位,主要从事地基大口径望远镜光学设计装调方面的研究。E-mail:whh_hit@163.com" ]
[ "王建立(1971-),男,山东曲阜人,研究员,博士生导师,2002年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事的研究领域包括空间目标光电探测技术、地基大口径望远镜总体技术等。Email:wangjianli@ciomp.ac.cn" ]
收稿日期:2022-10-18,
修回日期:2022-11-14,
纸质出版日期:2022-12-10
移动端阅览
王洪浩,王建立,陈涛等.地基大口径望远镜重力弯曲引起的指向变化检测与修正[J].光学精密工程,2022,30(23):3021-3030.
WANG Honghao,WANG Jianli,CHEN Tao,et al.Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J].Optics and Precision Engineering,2022,30(23):3021-3030.
王洪浩,王建立,陈涛等.地基大口径望远镜重力弯曲引起的指向变化检测与修正[J].光学精密工程,2022,30(23):3021-3030. DOI: 10.37188/OPE.20223023.3021.
WANG Honghao,WANG Jianli,CHEN Tao,et al.Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J].Optics and Precision Engineering,2022,30(23):3021-3030. DOI: 10.37188/OPE.20223023.3021.
随望远镜口径的不断增大,望远镜的结构尺寸相应增加,重力场引起的望远镜光轴指向变化影响也愈发明显,对地基大口径望远镜的指向检测与修正是获取高精度轨道目标数据的必要前提。为了实现望远镜指向误差的估计、测量及主动修正,从望远镜的光机系统结构出发,分析了引起望远镜光轴变化的因素,提出了光轴变化检测与修正方法。实验结果表明,在望远镜低仰角情况下,光轴最大相对变化为126″,望远镜桁架结构的重弯曲影响是引起俯仰角相关指向变化的主要因素。以4 m口径望远镜为例,提出基于次镜调整结构及卡式系统零彗差点理论的修正模型来提高望远镜的跟踪性能,修正后望远镜光轴的最大相对变化在3″内。该地基大口径望远镜指向变化检测与修正方法可应用于实际望远镜的标定和装调。
As the diameter of ground-based telescopes increases, the structural size of the telescope also increases accordingly, and the effect of the telescope's optical axis pointing caused by gravity becomes increasingly pronounced. The measurement and calibration of optical axis changes for ground-based large-aperture telescopes is a necessary prerequisite to obtaining high-precision orbital target data. To realize the estimation, measurement, and active correction of the telescope pointing error, the optical axis changing rules of the telescope system are analyzed from the structure of the telescope's opt-mechanical system, and an optical axis change measurement and calibration method of the is proposed. The experimental results show that the maximum relative change of the optical axis is 126″ when the telescope is at low elevation. The main factor causing the pointing change is the effect of gravity on the telescope truss structure. Finally, a calibration model based on the secondary mirror adjustment structure and the coma-free theory of the Cassegrain system is proposed to improve the tracking performance of the 4-meter aperture telescope. The maximum relative change in the optical axis of the telescope after calibration is within 3″. According to the test results, the ground-based large telescope pointing change measurement and calibration method can be applied to the calibration and mounting process of the telescope.
BELY P Y . The Design and Construction of Large Optical Telescopes [M]. New York, NY : Springer New York , 2003 .
WILSON R N , FRANZA F , NOETHE L , et al . Active optics [J]. Journal of Modern Optics , 1991 , 38 ( 2 ): 219 - 243 .
GUISARD S , NOETHE L , SPYROMILIO J . Performance of active optics at the VLT [C]. Astronomical Telescopes and Instrumentation. Proc SPIE 4003, Optical Design, Materials, Fabrication, and Maintenance , Munich, Germany . 2000 , 4003 : 154 - 164 .
BORTOLETTO F , FANTINEL D , RAGAZZONI R , et al . Active optics handling inside Galileo Telescope [C]. SPIE Proceedings , Advanced Technology Optical Telescopes V. Kailua , Kona , HI. SPIE , 1994 , 2199 : 212 - 222 .
SCHIPANI P , D’ORSI S , FIERRO D , et al . Active optics control of VST telescope secondary mirror [J]. Applied Optics , 2010 , 49 ( 16 ): 3199 - 3207 .
PERNECHELE C , BORTOLETTO F , REIF K . Position control for active secondary mirror of a two-mirror telescope [C]. Optical Science, Engineering and Instrumentation ' 97 . Proc SPIE 3112, Telescope Control Systems II, San Diego, CA, USA . 1997, 3112 : 172 - 180 .
SCHIPANI P , PERROTTA F , MOLFESE C , et al . The VST secondary mirror support system [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation , Marseille, France . 2008 , 7018 : 1380 - 1389 .
SCHIPANI P , D'ORSI S , FIERRO D , et al . Performance of the VST secondary mirror support system [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7739, Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation , San Diego, California, USA . 2010 , 7739 : 1102 - 1110 .
HILEMAN E A , ELIAS J , JOYCE R , et al . Passive compensation of gravity flexure in optical instruments [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 5495, Astronomical Structures and Mechanisms Technology, Glasgow, United Kingdom . 2004 , 5495 : 622 - 635 .
WANG H , ZHAO Y X . Pointing model for LAMOST experiment set [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 6267, Ground-Based and Airborne Telescopes , Orlando, Florida, USA . 2006 , 6267 : 1157 - 1164 .
MEEKS R L . Sources of uncertainty in telescope pointing models [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 5497, Modeling and Systems Engineering for Astronomy, Glasgow, United Kingdom . 2004 , 5497 : 140 - 148 .
李振伟 , 杨文波 , 张楠 . 水平式光电望远镜静态指向误差的修正 [J]. 中国光学 , 2015 , 8 ( 2 ): 263 - 269 . doi: 10.3788/CO.20150802.0263 http://dx.doi.org/10.3788/CO.20150802.0263
LI ZH W , YANG W B , ZHANG N . Static pointing error of level mounting optoelectronic telescope [J]. Chinese Optics , 2015 , 8 ( 2 ): 263 - 269 . (in Chinese) . doi: 10.3788/CO.20150802.0263 http://dx.doi.org/10.3788/CO.20150802.0263
KEITZER S A , KIMBRELL J E , GREENWALD D . Deterministic errors in pointing and tracking systems I: identification and correction of static errors [C]. Orlando ' 91 . Proc SPIE 1482, Acquisition, Tracking, and PointingV, Orlando, FL, USA. 1991, 1482 : 406 - 414 .
WALLACE P T . Rigorous algorithm for telescope pointing [C]. Astronomical Telescopes and Instrumentation. Proc SPIE 4848, Advanced Telescope and Instrumentation Control Software II , Waikoloa , Hawai'i , USA . 2002 , 4848 : 125 - 136 .
柳光乾 , 校启公 , 邓林华 , 等 . 1m太阳望远镜光轴变化检测与改正 [J]. 中国激光 , 2013 , 40 ( 1 ): 206 - 211 . doi: 10.3969/j.issn.1672-7673.2013.02.012 http://dx.doi.org/10.3969/j.issn.1672-7673.2013.02.012
LIU G Q , XIAO Q G , DENG L H , et al . Detection and calibration of optical axes change for one meter solar telescope [J]. Chinese Journal of Lasers , 2013 , 40 ( 1 ): 206 - 211 . (in Chinese) . doi: 10.3969/j.issn.1672-7673.2013.02.012 http://dx.doi.org/10.3969/j.issn.1672-7673.2013.02.012
周超 , 杨洪波 , 吴小霞 , 等 . 地基大口径望远镜结构的性能分析 [J]. 光学 精密工程 , 2011 , 19 ( 1 ): 138 - 145 . doi: 10.3788/OPE.20111901.0138 http://dx.doi.org/10.3788/OPE.20111901.0138
ZHOU CH , YANG H B , WU X X , et al . Structural analysis of ground-based large telescopes [J]. Opt. Precision Eng. , 2011 , 19 ( 1 ): 138 - 145 . (in Chinese) . doi: 10.3788/OPE.20111901.0138 http://dx.doi.org/10.3788/OPE.20111901.0138
车鑫 , 贾平 , 田大鹏 . 机载光电载荷视轴指向控制技术综述 [J]. 光学 精密工程 , 2018 , 26 ( 7 ): 1642 - 1652 .
CHE X , JIA P , TIAN D P . A survey of line of sight control technology for airborne photoelectric payload [J]. Opt. Precision Eng. , 2018 , 26 ( 7 ): 1642 - 1652 . (in Chinese)
胡守伟 , 宋晓莉 , 张惠 . 巨型望远镜方位轴系的集成系统 [J]. 光学 精密工程 , 2018 , 26 ( 4 ): 850 - 856 .
HU SH W , SONG X L , ZHANG H . Integrated system of azimuth structure for extremely large telescopes [J]. Opt. Precision Eng. , 2018 , 26 ( 4 ): 850 - 856 . (in Chinese)
程向明 , 陈林飞 , 许骏 , 等 . YNST光电导行镜机械设计 [J]. 天文研究与技术 , 2011 , 8 ( 2 ): 196 - 204 . doi: 10.3969/j.issn.1672-7673.2011.02.015 http://dx.doi.org/10.3969/j.issn.1672-7673.2011.02.015
CHENG X M , CHEN L F , XU J , et al . Mechanical design of the auto-Guiding telescope of the YNST [J]. Astronomical Research & Technology , 2011 , 8 ( 2 ): 196 - 204 . (in Chinese) . doi: 10.3969/j.issn.1672-7673.2011.02.015 http://dx.doi.org/10.3969/j.issn.1672-7673.2011.02.015
HUSSAIN G , IKRAM M . Optical measurements of angle and axis of rotation [J]. Optics Letters , 2008 , 33 ( 21 ): 2419 - 2421 .
MORETTO G , KUHN J R . Optical performance of the 6.5-m off-axis new planetary telescope [J]. Applied Optics , 2000 , 39 ( 16 ): 2782 - 2789 .
张雏 , 周冰 , 沈学举 , 段晓峰 . 精确校正激光测距仪三光轴平行的理论计算方法研究 [J]. 光学 精密工程 , 2002 , 10 ( 6 ): 650 - 654 . doi: 10.3321/j.issn:1004-924X.2002.06.023 http://dx.doi.org/10.3321/j.issn:1004-924X.2002.06.023
ZHANG CH , ZHOU B , SHEN X J , et al . Study of the calculation method for accurately adjusting laser-range-finder's three-optic-axes to parallel to each other [J]. Opt. Precision Eng. , 2002 , 10 ( 6 ): 650 - 654 . (in Chinese) . doi: 10.3321/j.issn:1004-924X.2002.06.023 http://dx.doi.org/10.3321/j.issn:1004-924X.2002.06.023
张桢君 , 王建成 , 程向明 , 等 . 多功能天文经纬仪光轴指向变化实测与修正 [J]. 光学 精密工程 , 2019 , 27 ( 11 ): 2321 - 2329 .
ZHANG ZH J , WANG J CH , CHENG X M , et al . Measurement and calibration of optical axis changes for multi-function astronomical theodolite [J]. Opt. Precision Eng. , 2019 , 27 ( 11 ): 2321 - 2329 . (in Chinese)
曹玉岩 , 王建立 , 陈涛 , 等 . 基于Hexapod平台的地基大型光学望远镜失调误差主动补偿 [J]. 光学 精密工程 , 2020 , 28 ( 11 ): 2452 - 2465 . doi: 10.37188/OPE.20202811.2452 http://dx.doi.org/10.37188/OPE.20202811.2452
CAO Y Y , WANG J L , CHEN T , et al . Active compensation of aberration for large ground-based telescope based on Hexapod platform [J]. Opt. Precision Eng. , 2020 , 28 ( 11 ): 2452 - 2465 . (in Chinese) . doi: 10.37188/OPE.20202811.2452 http://dx.doi.org/10.37188/OPE.20202811.2452
REN B C , JIN G , ZHONG X . Third-order coma-free point in two-mirror telescopes by a vector approach [J]. Applied Optics , 2011 , 50 ( 21 ): 3918 - 3923 .
0
浏览量
1014
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构