浏览全部资源
扫码关注微信
1.北京邮电大学 世纪学院 计算机科学与技术系,北京102101
2.新疆大学 信息科学与工程学院, 新疆 乌鲁木齐 830046
[ "齐光磊(1979-),男,北京人,博士,副教授,2002年、2006年于西安电子科技大学分别获得学士、硕士学位,2017年于北京工业大学获得博士学位,主要从事机器学习、模式识别、计算机视觉等方面的研究。E-mail: qiguanglei@ccbupt.cn" ]
收稿日期:2022-05-18,
修回日期:2022-07-08,
纸质出版日期:2022-12-25
移动端阅览
张浩,齐光磊,侯小刚等.基于改进Fisher准则的深度卷积生成对抗网络算法[J].光学精密工程,2022,30(24):3239-3249.
ZHANG Hao,QI Guanglei,HOU Xiaogang,et al.Deep convolutional generative adversarial network algorithm based on improved fisher's criterion[J].Optics and Precision Engineering,2022,30(24):3239-3249.
张浩,齐光磊,侯小刚等.基于改进Fisher准则的深度卷积生成对抗网络算法[J].光学精密工程,2022,30(24):3239-3249. DOI: 10.37188/OPE.20223024.3239.
ZHANG Hao,QI Guanglei,HOU Xiaogang,et al.Deep convolutional generative adversarial network algorithm based on improved fisher's criterion[J].Optics and Precision Engineering,2022,30(24):3239-3249. DOI: 10.37188/OPE.20223024.3239.
针对当训练样本量不足或者迭代次数降低时生成图像质量急剧下降的问题,提出了一种基于改进Fisher准则的深度卷积生成对抗网络算法(FDCGAN,Deep Convolutional Generative Adversarial Network algorithm based on improved Fisher's criterion)。该方法在判别模型中添加线性层,用来提取类别信息。在反向传播中采用基于Fisher的约束准则,结合标签和类别信息,在权值的迭代调整时既考虑误差的最小化,又同时让样本保持类内距离小、类间距离大,从而使权值能更加快速地逼近最优值。通过与最新不同的6个网络模型进行对比实验,FDCGAN模型在FID指标上均取得了较好的效果。此外,通过将该方法运用到目前先进模型上进行泛化测试,实验结果均取得较理想的效果。
An improved Fisher’s criterion-based deep convolutional generative adversarial network algorithm (FDCGAN) is proposed in this study to solve the problem of quality deterioration in generated images when the training sample size is insufficient or number of iterations decreases. In this method, a linear layer is added to the discriminative model to extract category information. Then, Fisher’s criterion is used in backpropagation to combine label and category information. To minimize errors, the weights are adjusted iteratively while maintaining small intra-class and large inter-class distances such that the weights can rapidly approach the optimal value. A comparison of the experimental results of the FDCGAN model with that of the most recent six network models shows that the proposed model achieves better performance in all the FID metrics. In addition, applying the proposed model to the current advanced models in generalization tests yields more satisfactory results.
陈佛计 , 朱枫 , 吴清潇 , 等 . 生成对抗网络及其在图像生成中的应用研究综述 [J]. 计算机学报 , 2021 , 44 ( 2 ): 347 - 369 . doi: 10.11897/SP.J.1016.2021.00347 http://dx.doi.org/10.11897/SP.J.1016.2021.00347
CHEN F J , ZHU F , WU Q X , et al . A survey about image generation with generative adversarial nets [J]. Chinese Journal of Computers , 2021 , 44 ( 2 ): 347 - 369 . (in Chinese) . doi: 10.11897/SP.J.1016.2021.00347 http://dx.doi.org/10.11897/SP.J.1016.2021.00347
ge Generation with Generative Adversarial Nets [J]. Chinese Journal of Computers , 2021 , 44 ( 02 ): 347 - 369 . (in Chinese) . doi: 10.11897/SP.J.1016.2021.00347 http://dx.doi.org/10.11897/SP.J.1016.2021.00347
汪美琴 , 袁伟伟 , 张继业 . 生成对抗网络GAN的研究综述 [J]. 计算机工程与设计 , 2021 , 42 ( 12 ): 3389 - 3395 .
WANG M Q , YUAN W W , ZHANG J Y . Overview of research on generative adversarial network GAN [J]. Computer Engineering and Design , 2021 , 42 ( 12 ): 3389 - 3395 . (in Chinese)
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial nets [J]. Advances in neural information processing systems , 2014 , 27 .
HAILING T , ZONGTAN S , YUAN Y , et al . Analysis and insights from the MIT technology review “top 10 breakthrough technologies” in the past six years [J]. Chinese Journal of Engineering Science , 2017 , 19 ( 5 ): 85 .
NOWOZIN S , CSEKE B , TOMIOKA R . f-gan: Training generative neural samplers using variational divergence minimization [J]. Advances in neural information processing systems , 2016 , 29 .
MAO X D , LI Q , XIE H R , et al . Least squares generative adversarial networks [C]. 2017 IEEE International Conference on Computer Vision . Venice, Italy . IEEE , 2017 : 2813 - 2821 . doi: 10.1109/iccv.2017.304 http://dx.doi.org/10.1109/iccv.2017.304
ARJOVSKY M , CHINTALA S , BOTTOU L . Wasserstein generative adversarial networks [C]. ICML'17 : Proceedings of the 34th International Conference on Machine Learning-Volume 70 . 2017 : 214 - 223 .
MROUEH Y , SERCU T . Fisher gan [J]. Advances in Neural Information Processing Systems , 2017 , 30 .
HJELM R D , JACOB A P , CHE T , et al . Boundary-seeking generative adversarial networks [J]. arXiv preprint arXi-v:1702 . 08431 , 2017 .
RADFORD A , METZ L , CHINTALA S . Unsupervised representation learning with deep convolutional generative adversarial networks [J]. arXiv preprint arXiv: 1511.06434 , 2015 .
MAKHZANI A , SHLENS J , JAITLY N , et al . Adversarial Autoe-ncoders [J]. arXiv preprint arXiv: 1511.05644 , 2015 .
ODENA A , OLAH C , SHLENS J . Conditional image synthesis with auxiliary classifier gans [C]. International conference on machine learning. PMLR , 2017 : 2642 - 2651 .
孙艳丰 , 齐光磊 , 胡永利 , 等 . 基于改进Fisher准则的深度卷积神经网络识别算法 [J]. 北京工业大学学报 , 2015 , 41 ( 6 ): 835 - 841 .
SUN Y F , QI G L , HU Y L , et al . Deep convolution neural network recognition algorithm based on improved fisher criterion [J]. Journal of Beijing University of Technology , 2015 , 41 ( 6 ): 835 - 841 . (in Chinese)
XU B , WANG N , CHEN T , et al . Empirical evaluation of rectified activations in convolutional network [J]. arXiv preprint arXiv: 1505.00853 , 2015 .
马永杰 , 徐小冬 , 张茹 , 等 . 生成式对抗网络及其在图像生成中的研究进展 [J]. 计算机科学与探索 , 2021 , 15 ( 10 ): 1795 - 1811 .
MA Y J , XU X D , ZHANG R , et al . Generative adversarial network and its research progress in image generation [J]. Journal of Frontiers of Computer Science and Technology , 2021 , 15 ( 10 ): 1795 - 1811 . (in Chinese)
胡铭菲 , 左信 , 刘建伟 . 深度生成模型综述 [J]. 自动化学报 , 2022 , 48 ( 1 ): 40 - 74 . doi: 10.16383/j.aas.c190866 http://dx.doi.org/10.16383/j.aas.c190866
HU M F , ZUO X , LIU J W . Survey on deep generative model [J]. Acta Automatica Sinica , 2022 , 48 ( 1 ): 40 - 74 . (in Chinese) . doi: 10.16383/j.aas.c190866 http://dx.doi.org/10.16383/j.aas.c190866
HEUSEL M , RAMSAUER H , UNTERTHINER T , et al . Gans trained by a two time-scale update rule converge to a local nash equilibrium [J]. Advances in neural information proces-sing systems , 2017 , 30 .
卢涛 , 陈冲 , 许若波 , 等 . 基于边缘增强生成对抗网络的人脸超分辨率重建 [J]. 华中科技大学学报(自然科学版) , 2020 , 48 ( 1 ): 87 - 92 .
LU T , CHEN CH , XU R B , et al . Face hallucination based on edge enhanced generative adversarial network [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2020 , 48 ( 1 ): 87 - 92 . (in Chinese)
赵海英 , 周伟 , 侯小刚 , 等 . 多标签分类的传统民族服饰纹样图像语义理解 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 695 - 703 . doi: 10.3788/OPE.20202803.0695 http://dx.doi.org/10.3788/OPE.20202803.0695
ZHAO H Y , ZHOU W , HOU X G , et al . Multi-label classification of traditional national costume pattern image semantic understanding [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 695 - 703 . (in Chinese) . doi: 10.3788/OPE.20202803.0695 http://dx.doi.org/10.3788/OPE.20202803.0695
徐哲 , 耿杰 , 蒋雯 , 等 . 联合训练生成对抗网络的半监督分类方法 [J]. 光学 精密工程 , 2021 , 29 ( 5 ): 1127 - 1135 . doi: 10.37188/OPE.20212905.1127 http://dx.doi.org/10.37188/OPE.20212905.1127
XU ZH , GENG J , JIANG W , et al . Co-training generative adversarial networks for semi-supervised classification method [J]. Opt. Precision Eng. , 2021 , 29 ( 5 ): 1127 - 1135 . (in Chinese) . doi: 10.37188/OPE.20212905.1127 http://dx.doi.org/10.37188/OPE.20212905.1127
郝帅 , 吴瑛琦 , 马旭 , 等 . 基于CycleGAN-SIFT的可见光和红外图像匹配 [J]. 光学 精密工程 , 2022 , 30 ( 5 ): 602 - 614 . doi: 10.37188/OPE.20223005.0592 http://dx.doi.org/10.37188/OPE.20223005.0592
HAO SH , WU Y Q , MA X , et al . Visible and infrared image matching based on CycleGAN-SIFT [J]. Opt. Precision Eng. , 2022 , 30 ( 5 ): 602 - 614 . (in Chinese) . doi: 10.37188/OPE.20223005.0592 http://dx.doi.org/10.37188/OPE.20223005.0592
ge matching based on CycleGAN-SIFT [J]. Optics and Pr-Engineeringecision , 2022 , 30 ( 5 ): 602 - 614 . (in Chinese) . doi: 10.37188/OPE.20223005.0592 http://dx.doi.org/10.37188/OPE.20223005.0592
0
浏览量
1006
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构