浏览全部资源
扫码关注微信
北京工业大学 先进制造技术北京市重点实验室,北京 100124
[ "王培桐(1992-),男,博士研究生,主要从事机床精度设计、机床几何误差和热误差的研究。E-mail:504789981@qq.com" ]
[ "范晋伟(1965-),男,博士,教授,主要从事数控技术、精密加工、伺服控制的研究。E-mail:jwfan@bjt.edu.cn" ]
收稿日期:2022-07-29,
修回日期:2022-08-31,
纸质出版日期:2023-01-10
移动端阅览
王培桐,范晋伟,任行飞等.基于热传导和卷积神经网络的磨床主轴热误差预测[J].光学精密工程,2023,31(01):129-140.
WANG Peitong,FAN Jinwei,REN Xingfei,et al.Thermal error prediction for grinding machine spindle based on heat conduction and convolutional neural network[J].Optics and Precision Engineering,2023,31(01):129-140.
王培桐,范晋伟,任行飞等.基于热传导和卷积神经网络的磨床主轴热误差预测[J].光学精密工程,2023,31(01):129-140. DOI: 10.37188/OPE.20233101.0129.
WANG Peitong,FAN Jinwei,REN Xingfei,et al.Thermal error prediction for grinding machine spindle based on heat conduction and convolutional neural network[J].Optics and Precision Engineering,2023,31(01):129-140. DOI: 10.37188/OPE.20233101.0129.
热变形是影响磨床加工精度的主要因素,严重制约了机床精度的进一步提高。为了提高热误差预测的精度,提出了一种基于热传导和卷积神经网络的磨床主轴热误差预测方法。根据热传导理论推导出主轴表面和外部环境的温差和热变量的映射关系,揭示了材料热变形本质。然后,建立了以温差为输入和主轴热变形量为输出的神经网络热误差预测模型。该模型拥有4个神经网络层,分别对应温差、热能增量、时间变量以及热变形量。运用反向传播算法对该预测模型进行训练并计算模型参数。最后,基于SINUMERIK 840D数控控制器开发了一套磨床主轴热误差补偿系统,并在某一数控磨床上进行了验证。结果表明,通过主轴热误差补偿后,磨床的加工精度提升了41.7%,验证了本文提出的主轴热误差预测模型的有效性和可行性。
Thermal deformation is the main factor affecting the machining accuracy of grinding machines, which severely limits further improvements in the accuracy of machine tools. However, only a few studies have investigated thermal error prediction, and the prediction accuracy has been low. Therefore, this paper proposes a method to predict the thermal error of grinding machine spindles based on the heat conduction theory and a convolutional neural network. First, according to the heat conduction theory, the mapping relationship between the thermal variables and the temperature difference between the surface of the main axis of Chu and the external environment is deduced, revealing the thermal deformation nature of the materials. Second, a neural network model for thermal error prediction with temperature difference as the input and thermal deformation of the main shaft as the output is established. The model has four neural network layers corresponding to temperature difference, thermal energy increment, time variable, and thermal deformation. The back-propagation algorithm is then used to train the prediction model and calculate the model parameters. Finally, based on the SINUMERIK 840D CNC controller, a set of thermal error compensation systems for grinding machine spindles are developed and verified using a CNC grinding machine. The results show that the machining accuracy of the grinder is improved by 41.7% following thermal error compensation for the spindle, thus confirming the validity and feasibility of the spindle thermal error prediction model proposed in this paper.
谢春 , 张为民 . 车铣复合加工中心综合误差检测及补偿策略 [J]. 光学 精密工程 , 2014 , 22 ( 4 ): 1004 - 1011 . doi: 10.3788/OPE.20142204.1004 http://dx.doi.org/10.3788/OPE.20142204.1004
XIE CH , ZHANG W M . Comprehensive measurement errors of 5-axis turning-milling centers and their compensation strategies [J]. Opt. Precision Eng. , 2014 , 22 ( 4 ): 1004 - 1011 . (in Chinese) . doi: 10.3788/OPE.20142204.1004 http://dx.doi.org/10.3788/OPE.20142204.1004
MIAN N S , FLETCHER S , LONGSTAFF A P , et al . Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations [J]. Precision Engineering , 2013 , 37 ( 2 ): 372 - 379 . doi: 10.1016/j.precisioneng.2012.10.006 http://dx.doi.org/10.1016/j.precisioneng.2012.10.006
何振亚 , 傅建中 , 陈子辰 . 基于球杆仪检测五轴数控机床主轴的热误差 [J]. 光学 精密工程 , 2015 , 23 ( 5 ): 1401 - 1408 . doi: 10.3788/ope.20152305.1401 http://dx.doi.org/10.3788/ope.20152305.1401
HE ZH Y , FU J ZH , CHEN Z CH . Thermal error measurement of spindle for 5-axis CNC machine tool based on ball bar [J]. Opt. Precision Eng. , 2015 , 23 ( 5 ): 1401 - 1408 . (in Chinese) . doi: 10.3788/ope.20152305.1401 http://dx.doi.org/10.3788/ope.20152305.1401
ABDULSHAHED A M , LONGSTAFF A P , FLETCHER S , et al . Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model [J]. Journal of Manufacturing Systems , 2016 , 41 : 130 - 142 . doi: 10.1016/j.jmsy.2016.08.006 http://dx.doi.org/10.1016/j.jmsy.2016.08.006
CHEN J S , YUAN J , NI J . Thermal error modelling for real-time error compensation [J]. The International Journal of Advanced Manufacturing Technology , 1996 , 12 ( 4 ): 266 - 275 . doi: 10.1007/bf01239613 http://dx.doi.org/10.1007/bf01239613
ZHANG C X , GAO F , MENG Z H , et al . A novel linear virtual temperature constructing method for thermal error modeling of machine tools [J]. The International Journal of Advanced Manufacturing Technology , 2015 , 80 ( 9 ): 1965 - 1973 . doi: 10.1007/s00170-015-7167-2 http://dx.doi.org/10.1007/s00170-015-7167-2
章婷 , 叶文华 , 梁睿君 , 等 . 主轴热误差前瞻预测模型 [J]. 计算机集成制造系统 , 2010 , 16 ( 11 ): 2369 - 2374 .
ZHANG T , YE W H , LIANG R J , et al . Foresighted prediction model of spindle thermal error [J]. Computer Integrated Manufacturing Systems , 2010 , 16 ( 11 ): 2369 - 2374 . (in Chinese)
魏弦 , 高峰 , 李艳 , 等 . 龙门机床进给系统热误差模型关键点优化 [J]. 仪器仪表学报 , 2016 , 37 ( 6 ): 1340 - 1346 . doi: 10.3969/j.issn.0254-3087.2016.06.018 http://dx.doi.org/10.3969/j.issn.0254-3087.2016.06.018
WEI X , GAO F , LI Y , et al . Optimization of thermal error model critical point for gantry machine tool feeding system [J]. Chinese Journal of Scientific Instrument , 2016 , 37 ( 6 ): 1340 - 1346 . (in Chinese) . doi: 10.3969/j.issn.0254-3087.2016.06.018 http://dx.doi.org/10.3969/j.issn.0254-3087.2016.06.018
LEE J H , LEE J H , YANG S H . Development of thermal error model with minimum number of variables using fuzzy logic strategy [J]. KSME International Journal , 2001 , 15 ( 11 ): 1482 - 1489 . doi: 10.1007/bf03185737 http://dx.doi.org/10.1007/bf03185737
ABDULSHAHED A M , LONGSTAFF A P , FLETCHER S . The application of ANFIS prediction models for thermal error compensation on CNC machine tools [J]. Applied Soft Computing , 2015 , 27 : 158 - 168 . doi: 10.1016/j.asoc.2014.11.012 http://dx.doi.org/10.1016/j.asoc.2014.11.012
苗恩铭 , 龚亚运 , 成天驹 , 等 . 支持向量回归机在数控加工中心热误差建模中的应用 [J]. 光学 精密工程 , 2013 , 21 ( 4 ): 980 - 986 . doi: 10.3788/ope.20132104.0980 http://dx.doi.org/10.3788/ope.20132104.0980
MIAO E M , GONG Y Y , CHENG T J , et al . Application of support vector regression machine to thermal error modelling of machine tools [J]. Opt. Precision Eng. , 2013 , 21 ( 4 ): 980 - 986 . (in Chinese) . doi: 10.3788/ope.20132104.0980 http://dx.doi.org/10.3788/ope.20132104.0980
WANG K C . Thermal error modeling of a machining center using grey system theory and HGA-trained neural network [J]. 2006 IEEE Conference on Cybernetics and Intelligent Systems , 2006 : 1 - 7 . doi: 10.1109/iccis.2006.252298 http://dx.doi.org/10.1109/iccis.2006.252298
WANG Y D , ZHANG G X , MOON K S , et al . Compensation for the thermal error of a multi-axis machining center [J]. Journal of Materials Processing Technology , 1998 , 75 ( 1/2/3 ): 45 - 53 . doi: 10.1016/s0924-0136(97)00291-4 http://dx.doi.org/10.1016/s0924-0136(97)00291-4
ESKANDARI S , AREZOO B , PositionalABDULLAH A. , geometrical , and thermal errors compensation by tool path modification using three methods of regression , networksneural , and logicfuzzy [J]. The International Journal of Advanced Manufacturing Technology , 2013 , 65 ( 9 ): 1635 - 1649 . doi: 10.1007/s00170-012-4285-y http://dx.doi.org/10.1007/s00170-012-4285-y
ABDULSHAHED A M , LONGSTAFF A , FLETCHER S , et al . Application of GNNMCI (1, N ) to Environmental Thermal Error Modelling of CNC Machine Tools [M]. KTH Royal Institute of Technology , 2013
WANG L P , WANG H T , LI T M , et al . A hybrid thermal error modeling method of heavy machine tools in z -axis [J]. The International Journal of Advanced Manufacturing Technology , 2015 , 80 ( 1 ): 389 - 400 . doi: 10.1007/s00170-015-6988-3 http://dx.doi.org/10.1007/s00170-015-6988-3
0
浏览量
482
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构