浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100039
3.陆军装甲兵学院士官学校,吉林 长春 130000
4.季华实验室, 广东 佛山 528200
[ "魏宗恩(1997-),男,山东日照人,硕士,主要从事机电系统精密控制方面的研究。E-mail:weizongen20@mails. ucas. ac.cn" ]
[ "邓永停(1987-),男,山东潍坊人,博士生导师,研究员,主要从事望远镜精密跟踪控制技术的研究及电子学设计。E-mail:dyt0612@163.com" ]
收稿日期:2020-08-30,
修回日期:2020-09-23,
纸质出版日期:2023-02-25
移动端阅览
魏宗恩,邓永停,乔延婷等.基于高斯过程的参数辨识及永磁同步电机模型电流预测控制策略[J].光学精密工程,2023,31(04):479-490.
WEI Zongen,DENG Yongting,QIAO Tingting,et al.Gaussian process-based parameter identification and model current predictive control strategy of PMSM[J].Optics and Precision Engineering,2023,31(04):479-490.
魏宗恩,邓永停,乔延婷等.基于高斯过程的参数辨识及永磁同步电机模型电流预测控制策略[J].光学精密工程,2023,31(04):479-490. DOI: 10.37188/OPE.20233104.0479.
WEI Zongen,DENG Yongting,QIAO Tingting,et al.Gaussian process-based parameter identification and model current predictive control strategy of PMSM[J].Optics and Precision Engineering,2023,31(04):479-490. DOI: 10.37188/OPE.20233104.0479.
为了提高永磁同步电机控制系统电流环控制器的性能,降低模型参数失配对控制系统的影响,提出了基于高斯过程参数辨识的永磁同步电机有限集模型预测电流控制策略(FCS-GPMPC)。首先,介绍了永磁同步电机电流预测模型并分析了模型参数失配对系统性能的影响;其次,为简化一般机器学习参数辨识算法中超参数复杂的调试过程,提出了一种基于高斯过程的模型参数的辨识方法;同时,引入预测值的置信区间作为参数预测效果的实时评估参考;最后,将高斯过程参数辨识与基于模型的有限集模型预测电流控制(FCS-MPC)相结合,在得到准确辨识的参数后对系统电流预测模型更新以提高系统鲁棒性和电流环跟踪性能。实验结果显示:在本文训练数据的统计特征下,测试数据均方根误差RMSE为0.002 1,
<math id="M1"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=40435429&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=40435423&type=
3.38666677
2.62466669
达到0.99。在参数波动条件下,与FCS-MPC相比,FCS-GPMPC策略下电流波动度降低了30.5%,电流平均偏移度降低了19.6%,另外对参考电流的阶跃变化,FCS-GPMPC有更好的动态响应。实验结果表明,基于高斯过程的模型预测控制方法可有效抑制模型失配对控制系统的影响,能够提高永磁同步电机控制系统电流控制器性能。
This paper proposes a model predictive control (MPC) method for permanent magnet synchronous motors (PMSMs) based on finite control set Gaussian process MPC (FCS-GPMPC) parameter identification to limit the influence of model mismatches on the control system and to improve the current controller performance of control systems in a PMSM. First, the current PMSM prediction model is introduced and the influence of model parameter mismatches on the system performance is analyzed. Secondly, in order to simplify the complex debugging process of hyperparameters in general machine learning parameter identification algorithms, the GPMPC method is proposed. At the same time, the confidence interval of the predicted value is introduced as a real-time evaluation reference for the parameter prediction effect. Finally, the GP parameter identification method is combined with the FCS-MPC to predict the system current after accurately obtaining the identified parameters. The model is updated to improve system robustness and current loop tracking performance. The experimental results show that under the statistical characteristics of the training data, the root mean square error and of the test data are 0.0021 and 0.99, respectively. Under the condition of parameter fluctuation, compared with FCS-MPC, FCS-GPMPC reduces current fluctuation by 30.5% and the average current offset by 19.6%. In addition, for step changes in the reference current, FCS-GPMPC has a better dynamic response. The proposed GP-MPC can effectively suppress the influence of model mismatch on control systems and can improve the performance of the current controller of PMSM control systems.
邓永停 , 刘军 , 李洪文 , 等 . 基于分段弧形永磁同步电机的4m望远镜控制系统 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 591 - 600 . doi: 10.3788/ope.20202803.0591 http://dx.doi.org/10.3788/ope.20202803.0591
DENG Y T , LIU J , LI H W , et al . Control system of 4 meters telescope based on segmented permanent magnet arc synchronous motor [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 591 - 600 . (in Chinese) . doi: 10.3788/ope.20202803.0591 http://dx.doi.org/10.3788/ope.20202803.0591
邓永停 , 李洪文 , 陈涛 . 2 m级望远镜跟踪架控制系统动态性能分析 [J]. 光学 精密工程 , 2018 , 26 ( 3 ): 654 - 661 . doi: 10.3788/ope.20182603.0654 http://dx.doi.org/10.3788/ope.20182603.0654
DENG Y T , LI H W , CHEN T . Dynamic analysis of two meters telescope mount control system [J]. Opt. Precision Eng. , 2018 , 26 ( 3 ): 654 - 661 . (in Chinese) . doi: 10.3788/ope.20182603.0654 http://dx.doi.org/10.3788/ope.20182603.0654
SARSEMBAYEV B , SULEIMENOV K , DO T D . High order disturbance observer based PI-PI control system with tracking anti-windup technique for improvement of transient performance of PMSM [J]. IEEE Access , 2021 , 9 : 66323 - 66334 . doi: 10.1109/access.2021.3074661 http://dx.doi.org/10.1109/access.2021.3074661
MA Z X , SAEIDI S , KENNEL R . FPGA implementation of model predictive control with constant switching frequency for PMSM drives [J]. IEEE Transactions on Industrial Informatics , 2014 , 10 ( 4 ): 2055 - 2063 . doi: 10.1109/tii.2014.2344432 http://dx.doi.org/10.1109/tii.2014.2344432
RODRIGUEZ J , PONTT J , SILVA C , et al . Predictive Current control of a voltage source inverter [C]. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551). 2025,2004 , Aachen, Germany. IEEE , 2004 : 2192 - 2196 .
WANG B , CHEN X L , YU Y , et al . Robust predictive current control with online disturbance estimation for induction machine drives [J]. IEEE Transactions on Power Electronics , 2017 , 32 ( 6 ): 4663 - 4674 . doi: 10.1109/tpel.2016.2602853 http://dx.doi.org/10.1109/tpel.2016.2602853
YAO Y , HUANG Y K , PENG F , et al . An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs [J]. IEEE Transactions on Industrial Electronics , 2020 , 67 ( 12 ): 10145 - 10155 . doi: 10.1109/tie.2019.2960755 http://dx.doi.org/10.1109/tie.2019.2960755
SIAMI M , KHABURI D A , RODRÍGUEZ J . Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch [J]. IEEE Transactions on Power Electronics , 2017 , 32 ( 9 ): 7160 - 7168 . doi: 10.1109/tpel.2016.2630274 http://dx.doi.org/10.1109/tpel.2016.2630274
ZHANG X G , ZHANG L , ZHANG Y C . Model predictive current control for PMSM drives with parameter robustness improvement [J]. IEEE Transactions on Power Electronics , 2019 , 34 ( 2 ): 1645 - 1657 . doi: 10.1109/tpel.2018.2835835 http://dx.doi.org/10.1109/tpel.2018.2835835
YUAN X , ZHANG S , ZHANG C N . Improved model predictive current control for SPMSM drives with parameter mismatch [J]. IEEE Transactions on Industrial Electronics , 2020 , 67 ( 2 ): 852 - 862 . doi: 10.1109/tie.2019.2901648 http://dx.doi.org/10.1109/tie.2019.2901648
MA C W , LI H Y , YAO X L , et al . An improved model-free predictive current control with advanced current gradient updating mechanism [J]. IEEE Transactions on Industrial Electronics , 2021 , 68 ( 12 ): 11968 - 11979 . doi: 10.1109/tie.2020.3044809 http://dx.doi.org/10.1109/tie.2020.3044809
BOLOGNANI S , CARLET P G , TINAZZI F , et al . Current ripple minimisation in deadbeat parameter-free predictive control of synchronous motor drives [J]. IEEE Open Journal of Industry Applications , 2021 , 2 : 278 - 288 . doi: 10.1109/ojia.2021.3113027 http://dx.doi.org/10.1109/ojia.2021.3113027
TINAZZI F , CARLET P G , BOLOGNANI S , et al . Motor parameter-free predictive current control of synchronous motors by recursive least-square self-commissioning model [J]. IEEE Transactions on Industrial Electronics , 2020 , 67 ( 11 ): 9093 - 9100 . doi: 10.1109/tie.2019.2956407 http://dx.doi.org/10.1109/tie.2019.2956407
MEESSEN K J , THELIN P , SOULARD J , et al . Inductance calculations of permanent-magnet synchronous machines including flux change and self- and cross-saturations [J]. IEEE Transactions on Magnetics , 2008 , 44 ( 10 ): 2324 - 2331 . doi: 10.1109/tmag.2008.2001419 http://dx.doi.org/10.1109/tmag.2008.2001419
BEDETTI N , CALLIGARO S , PETRELLA R . Stand-still self-identification of flux characteristics for synchronous reluctance machines using novel saturation approximating function and multiple linear regression [J]. IEEE Transactions on Industry Applications , 2016 , 52 ( 4 ): 3083 - 3092 . doi: 10.1109/tia.2016.2535413 http://dx.doi.org/10.1109/tia.2016.2535413
UNDERWOOD S J , HUSAIN I . Online parameter estimation and adaptive control of permanent-magnet synchronous machines [J]. IEEE Transactions on Industrial Electronics , 2010 , 57 ( 7 ): 2435 - 2443 . doi: 10.1109/tie.2009.2036029 http://dx.doi.org/10.1109/tie.2009.2036029
FENG G D , LAI C Y , MUKHERJEE K , et al . Current injection-based online parameter and VSI nonlinearity estimation for PMSM drives using current and voltage DC components [J]. IEEE Transactions on Transportation Electrification , 2016 , 2 ( 2 ): 119 - 128 . doi: 10.1109/tte.2016.2538180 http://dx.doi.org/10.1109/tte.2016.2538180
KANG G H , HUR J , NAM H , et al . Analysis of irreversible magnet demagnetization in line-start motors based on the finite-element method [J]. IEEE Transactions on Magnetics , 2003 , 39 ( 3 ): 1488 - 1491 . doi: 10.1109/tmag.2003.810330 http://dx.doi.org/10.1109/tmag.2003.810330
RAHMAN M A , HOQUE M A . On-line adaptive artificial neural network based vector control of permanent magnet synchronous motors [J]. IEEE Transactions on Energy Conversion , 1998 , 13 ( 4 ): 311 - 318 . doi: 10.1109/60.736315 http://dx.doi.org/10.1109/60.736315
AVDEEV A , OSIPOV O . PMSM identification using genetic algorithm [C]. 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED). January 30 - February 2 , 2019 , Moscow, Russia. IEEE , 2019: 1 - 4 . doi: 10.1109/iwed.2019.8664250 http://dx.doi.org/10.1109/iwed.2019.8664250
LI L , CARTES D A , LIU W X . Particle swarm optimization based parameter identification applied to PMSM [C]. 2007 American Control Conference . 913,2007 , New York, NY, USA . IEEE , 2007 : 2955 - 2960 . doi: 10.1109/acc.2007.4282649 http://dx.doi.org/10.1109/acc.2007.4282649
TOFIGHI E M , MAHDIZADEH A , FEYZI M R . Real-time estimation and tracking of parameters in permanent magnet synchronous motor using a modified two-stage particle swarm optimization algorithm [C]. 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE). 1719,2013 , Munich, Germany. IEEE , 2013 : 1 - 7 . doi: 10.1109/sled-precede.2013.6684496 http://dx.doi.org/10.1109/sled-precede.2013.6684496
刘京 , 邓永停 , 李洪文 . 基于级联滑模控制的高精度光电跟踪与捕获 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 350 - 362 .
LIU J , DENG Y T , LI H W . High-precision photoelectric acquisition and tracking based on cascade sliding mode control [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 350 - 362 . (in Chinese)
ZHAO L , LUO S H , HU X C , et al . Accelerated adaptive backstepping control of the chaotic PMSM via the type-2 sequential fuzzy neural network [C]. 2020 International Symposium on Autonomous Systems (ISAS). 68,2020 , Guangzhou, China. IEEE , 2021 : 35 - 40 . doi: 10.1109/isas49493.2020.9378841 http://dx.doi.org/10.1109/isas49493.2020.9378841
0
浏览量
935
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构