浏览全部资源
扫码关注微信
1.山东交通学院 汽车工程学院,山东 济南 250357
2.中国科学院 力学研究所,北京 100190
3.北京理工大学 机械与车辆学院,北京 100081
[ "黄雪涛(1978-),男,山东东明人,博士,副教授,2014年于北京理工大学获博士学位,主要从事履带式装备越野通过性研究。E-mail:xuetaohuang@163.com" ]
[ "李玉琼(1982-),男,湖南娄底人,研究员,2010年于北京理工大学获得博士学位,主要从事车辆地面力学,星壤力学探测与模型构建研究。E-mail:liyuqiong@imech.ac.cn" ]
收稿日期:2022-06-09,
修回日期:2022-07-05,
纸质出版日期:2023-03-10
移动端阅览
黄雪涛,李玉琼,董明明等.履带装备超湿黏土壤土地面通过性研究[J].光学精密工程,2023,31(05):719-728.
HUANG Xuetao,LI Yuqiong,DONG Mingming,et al.Study on super-wetting clay soil trafficability of track equipment[J].Optics and Precision Engineering,2023,31(05):719-728.
黄雪涛,李玉琼,董明明等.履带装备超湿黏土壤土地面通过性研究[J].光学精密工程,2023,31(05):719-728. DOI: 10.37188/OPE.20233105.0719.
HUANG Xuetao,LI Yuqiong,DONG Mingming,et al.Study on super-wetting clay soil trafficability of track equipment[J].Optics and Precision Engineering,2023,31(05):719-728. DOI: 10.37188/OPE.20233105.0719.
本文针对超湿黏土壤土地面履带装备通过性问题,研究了履带装备黏土壤土通过性的评价指标。首先,采集了黏土壤土的土壤样本和地面高程信息,进行了黏土壤土的力学特性实验,获取了土壤力学特性参数,构建了地面不平度功率谱密度函数;其次,结合某履带装备结构参数,构建了履带装备超湿黏土壤土地面通过性仿真模型,以负重轮沉陷量为评价指标,得出负重轮最大沉陷量315.01 mm小于装备离地间隙的结论;研究了履带装备通过性的影响因素,得出了履带装备在超湿黏土壤土上的通过性随装备行驶速度、履带预张紧力、地面等级、土壤黏聚模量的变化规律。本文的研究成果具有较强的工程实践意义,可为履带装备的设计研发和优化升级提供理论指导和技术支撑。
To solve the trafficability problem of track equipment on super-wetting clay soil, this study investigates the evaluation indexes of track equipment trafficability on super-wetting clay soil, and suggests revised trafficability rules of the track equipment on super-wetting clay-soil ground using the equipment driving speed, pretension, ground grade, and soil cohesion modulus. First, soil samples of clay soil are collected and the mechanical properties are tested. The parameters of mechanical properties and ground elevation information are thus obtained, and the power spectral density function of ground roughness is developed. Combined with specific structural parameters of the track equipment, this study also constructed a ground trafficability simulation model of track equipment on super-wetting clay soil, and it considered the load wheels’ sinkages as evaluation targets. Based on the results obtained, the maximum settlement of the road wheel is 315.01 mm, which is less than the ground clearance of track equipment. In addition, it analyzed the influencing factors of track-equipment's trafficability and obtained the changing laws of the crawler equipment trafficability on super-wet clay soil using the equipment speed, crawler pretension, ground grade, and soil cohesion modulus. The research results of this paper have good potential for engineering application, and can provide theoretical guidance and technical support for track equipment design and optimization.
YANG C B , YANG G , LIU Z F , et al . A method for deducing pressure-sinkage of tracked vehicle in rough terrain considering moisture and sinkage speed [J]. Journal of Terramechanics , 2018 , 79 : 99 - 113 . doi: 10.1016/j.jterra.2018.09.001 http://dx.doi.org/10.1016/j.jterra.2018.09.001
HE J , WU D L , MA J , et al . Research on repeated loading and sinkage characteristics of soil by numerical analysis [J]. IOP Conference Series: Earth and Environmental Science , 2019 , 300 ( 2 ): 022153 . doi: 10.1088/1755-1315/300/2/022153 http://dx.doi.org/10.1088/1755-1315/300/2/022153
OLIVIER B , VERLINDEN O , KOUROUSSIS G . A vehicle/track/soil model using co-simulation between multibody dynamics and finite element analysis [J]. International Journal of Rail Transportation , 2020 , 8 ( 2 ): 135 - 158 . doi: 10.1080/23248378.2019.1642152 http://dx.doi.org/10.1080/23248378.2019.1642152
GHESHLAGHI F , MARDANI A . Prediction of soil vertical stress under off-road tire using smoothed-particle hydrodynamics [J]. Journal of Terramechanics , 2021 , 95 : 7 - 14 . doi: 10.1016/j.jterra.2021.02.004 http://dx.doi.org/10.1016/j.jterra.2021.02.004
PEIRET A , KARPMAN E , KOVÁCS L L , et al . Modelling of off-road wheeled vehicles for real-time dynamic simulation [J]. Journal of Terramechanics , 2021 , 97 : 45 - 58 . doi: 10.1016/j.jterra.2021.04.001 http://dx.doi.org/10.1016/j.jterra.2021.04.001
WASFY T , JAYAKUMAR P . Next-generation NATO reference mobility model complex terramechanics-Part 1: definition and literature review [J]. Journal of Terramechanics , 2021 , 96 : 45 - 57 . doi: 10.1016/j.jterra.2021.02.002 http://dx.doi.org/10.1016/j.jterra.2021.02.002
MASON G L , SALMON J E , MCLEOD S , et al . An overview of methods to convert cone index to bevameter parameters [J]. Journal of Terramechanics , 2020 , 87 : 1 - 9 . doi: 10.1016/j.jterra.2019.10.001 http://dx.doi.org/10.1016/j.jterra.2019.10.001
CHOI K K , JAYAKUMAR P , FUNK M , et al . Framework of reliability-based stochastic mobility map for next generation NATO reference mobility model [J]. Journal of Computational and Nonlinear Dynamics , 2019 , 14 ( 2 ): 1 - 10 . doi: 10.1115/1.4041350 http://dx.doi.org/10.1115/1.4041350
GONZALEZ R , JAYAKUMAR P , IAGNEMMA K . Generation of stochastic mobility maps for large-scale route planning of ground vehicles: a case study [J]. Journal of Terramechanics , 2017 , 69 : 1 - 11 . doi: 10.1016/j.jterra.2016.10.001 http://dx.doi.org/10.1016/j.jterra.2016.10.001
MCCULLOUGH M , JAYAKUMAR P , DASCH J , et al . The Next Generation NATO Reference mobility model development [J]. Journal of Terramechanics , 2017 , 73 : 49 - 60 . doi: 10.1016/j.jterra.2017.06.002 http://dx.doi.org/10.1016/j.jterra.2017.06.002
WONG J Y , JAYAKUMAR P , TOMA E , et al . Comparison of simulation models NRMM and NTVPM for assessing military tracked vehicle cross-country performance [J]. Journal of Terramechanics , 2018 , 80 : 31 - 48 . doi: 10.1016/j.jterra.2018.10.002 http://dx.doi.org/10.1016/j.jterra.2018.10.002
NICOLINI A , MOCERA F , SOMÀ A . Multibody simulation of a tracked vehicle with deformable ground contact model [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics , 2019 , 233 ( 1 ): 152 - 162 . doi: 10.1177/1464419318784293 http://dx.doi.org/10.1177/1464419318784293
KARPMAN E , KÖVECSES J , HOLZ D , et al . Discrete element modelling for wheel-soil interaction and the analysis of the effect of gravity [J]. Journal of Terramechanics , 2020 , 91 : 139 - 153 . doi: 10.1016/j.jterra.2020.06.002 http://dx.doi.org/10.1016/j.jterra.2020.06.002
PARKER M , STOTT A , BODIE M , et al . Vehicle mobility on highly organic soils [J]. Journal of Terramechanics , 2021 , 98 : 16 - 24 . doi: 10.1016/j.jterra.2021.09.001 http://dx.doi.org/10.1016/j.jterra.2021.09.001
李睿 , 项昌乐 , 王超 , 等 . 自动驾驶履带车辆鲁棒自适应轨迹跟踪控制方法 [J]. 兵工学报 , 2021 , 42 ( 6 ): 1128 - 1137 . doi: 10.3969/j.issn.1000-1093.2021.06.002 http://dx.doi.org/10.3969/j.issn.1000-1093.2021.06.002
LI R , XIANG C L , WANG C , et al . Robust adaptive trajectory tracking control approach for autonomous tracked vehicles [J]. Acta Armamentarii , 2021 , 42 ( 6 ): 1128 - 1137 . (in Chinese) . doi: 10.3969/j.issn.1000-1093.2021.06.002 http://dx.doi.org/10.3969/j.issn.1000-1093.2021.06.002
0
浏览量
472
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构