浏览全部资源
扫码关注微信
1.吉林大学 工程仿生教育部重点实验室,吉林 长春 130022
2.中国空间技术研究院 北京空间飞行器总体设计部,北京 100094
3.中国科学院 力学研究所 中国科学院流固耦合系统力学重点实验室,北京 100190
[ "申 彦(1998-),男,山西临汾人,博士研究生,2020年于吉林大学获得学士学位,主要从事深空探测地面力学方向的研究。E-mail:shenyan20@mails.jlu.edu.cn" ]
[ "邹 猛(1978-),男,辽宁海城人,博士,教授,博士生导师,2018年于吉林大学获得博士学位,主要从事深空探测地面力学方向的研究。E-mail:zoumeng@jlu.edu.cn" ]
[ "李玉琼(1982-),男,湖南娄底人,研究员,2010年于北京理工大学获得博士学位,主要从事车辆地面力学,星壤力学探测与模型构建研究。E-mail:liyuqiong@imech.ac.cn" ]
收稿日期:2022-06-04,
修回日期:2022-08-01,
纸质出版日期:2023-03-10
移动端阅览
申彦,邹猛,党兆龙等.火星车通过性评估技术现状与展望[J].光学精密工程,2023,31(05):729-745.
SHEN Yan,ZOU Meng,DANG Zhaolong,et al.Trafficability analysis for Mars rover: present and development[J].Optics and Precision Engineering,2023,31(05):729-745.
申彦,邹猛,党兆龙等.火星车通过性评估技术现状与展望[J].光学精密工程,2023,31(05):729-745. DOI: 10.37188/OPE.20233105.0729.
SHEN Yan,ZOU Meng,DANG Zhaolong,et al.Trafficability analysis for Mars rover: present and development[J].Optics and Precision Engineering,2023,31(05):729-745. DOI: 10.37188/OPE.20233105.0729.
火星表面地形地貌复杂,且覆盖有松软的火星土壤,这使得火星车在巡视探测时面临大沉陷、高滑转,甚至不能通过的风险。因此,火星车通过性分析和路径规划对巡视探测至关重要。本文调研了美国索杰纳号、勇气号、机遇号、好奇号、毅力号和我国祝融号火星车的通过性评估策略与方法,并分析基于多信息融合、深度学习和数据驱动的通过性评估研究新进展。最后,对未来火星车通过性判断发展方向进行了展望。
The surface of Mars is a complex terrain covered with soft soil, which poses significant risks of subsidence, high slip, or even collapse for rovers exploring the planet. A thorough analysis of rover trafficability and effective path planning are crucial in mitigating these risks. This paper discusses a comprehensive review of the strategies and methods employed by the Sojourner, Spirit, Opportunity, Curiosity, Perseverance, and Zhurong rovers and the latest advances in trafficability assessment based on multi-information fusion, deep learning, and data-driven techniques. Finally, this paper outlines the prospects for advancing the field of rover trafficability assessment.
BEKKER M . G. Theory of Land Locomotion [M]. Ann Arbor . University of Michigan Press , 1956 .
WONG J Y . Terramechanics and off-Road Vehicle Engineering [M]. ELSEVIER , 2010 . doi: 10.1016/b978-0-7506-8561-0.00006-3 http://dx.doi.org/10.1016/b978-0-7506-8561-0.00006-3
WISMER R D , LUTH H J . Off-road traction prediction for wheeled vehicles [J]. Journal of Terramechanics , 1973 , 10 ( 2 ): 49 - 61 . doi: 10.1016/0022-4898(73)90014-1 http://dx.doi.org/10.1016/0022-4898(73)90014-1
OBERMAYR M , DRESSLER K , VRETTOS C , et al . Prediction of draft forces in cohesionless soil with the Discrete Element Method [J]. Journal of Terramechanics , 2011 , 48 ( 5 ): 347 - 358 . doi: 10.1016/j.jterra.2011.08.003 http://dx.doi.org/10.1016/j.jterra.2011.08.003
邹猛 , 李建桥 , 贾阳 , 等 . 月壤静力学特性的离散元模拟 [J]. 吉林大学学报(工学版) , 2008 , 38 ( 2 ): 383 - 387 .
ZOU M , LI J Q , JIA Y , et al . Statics characteristics of lunar soil by DEM simulation [J]. Journal of Jilin University (Engineering and Technology Edition) , 2008 , 38 ( 2 ): 383 - 387 . (in Chinese)
高峰 , 李雯 , 孙刚 , 等 . 模拟月壤可行驶性的离散元数值分析 [J]. 北京航空航天大学学报 , 2009 , 35 ( 4 ): 501 - 504, 513 .
GAO F , LI W , SUN G , et al . Numerical analysis on travelability of lunar soil simulant by means of distinct element method [J]. Journal of Beijing University of Aeronautics and Astronautics , 2009 , 35 ( 4 ): 501 - 504, 513 . (in Chinese)
WONG J . The Theory of Ground Vehicles- 3 rd Edition [M]. New York : John Wiley & Sons , 2001 .
WONG J Y , REECE A R . Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: part I. Performance of diren rigid wheels [J]. Journal of Terramechanics , 1967 , 4 ( 1 ): 81 - 98 . doi: 10.1016/0022-4898(67)90105-x http://dx.doi.org/10.1016/0022-4898(67)90105-x
WONG J Y , REECE A R . Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: part II. Performance of towed rigid wheels [J]. Journal of Terramechanics , 1967 , 4 ( 2 ): 7 - 25 . doi: 10.1016/0022-4898(67)90035-3 http://dx.doi.org/10.1016/0022-4898(67)90035-3
BLAKE D F , MORRIS R V , KOCUREK G , et al . Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow [J]. Science , 2013 , 341 ( 6153 ): 1239505 .
TEAM R . Characterization of the Martian surface deposits by the Mars pathfinder rover, sojourner [J]. Science , 1997 , 278 ( 5344 ): 1765 - 1768 . doi: 10.1126/science.278.5344.1765 http://dx.doi.org/10.1126/science.278.5344.1765
SULLIVAN R , ANDERSON R , BIESIADECKI J , et al . Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs [J]. Journal of Geophysical Research: Planets , 2011 , 116 ( E2 ): E02006 . doi: 10.1029/2010je003625 http://dx.doi.org/10.1029/2010je003625
ARVIDSON R E , ANDERSON R C , BARTLETT P , et al . Localization and physical properties experiments conducted by Spirit at Gusev Crater [J]. Science , 2004 , 305 ( 5685 ): 821 - 824 . doi: 10.1126/science.1099922 http://dx.doi.org/10.1126/science.1099922
ARVIDSON R E , BONITZ R G , ROBINSON M L , et al . Results from the Mars phoenix lander robotic arm experiment [J]. Journal of Geophysical Research: Planets , 2009 , 114 ( E1 ): E00 E 02 . doi: 10.1029/2009je003408 http://dx.doi.org/10.1029/2009je003408
WiKIPEDIA . Phoenix(spacecraft) [EB/OL]. [ 2023-02-12 ]. https://en.wikipedia.org/wiki/Phoenix_(spacecraft) https://en.wikipedia.org/wiki/Phoenix_(spacecraft)
DING L , ZHOU R , YU T , et al . Surface characteristics of the Zhurong Mars rover traverse at utopia planitia [J]. Nature Geoscience , 2022 , 15 ( 3 ): 171 - 176 . doi: 10.1038/s41561-022-00905-6 http://dx.doi.org/10.1038/s41561-022-00905-6
IAGNEMMA K , KANG S , SHIBLY H , et al . Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers [J]. IEEE Transactions on Robotics , 2004 , 20 ( 5 ): 921 - 927 . doi: 10.1109/tro.2004.829462 http://dx.doi.org/10.1109/tro.2004.829462
IAGNEMMA K , KANG S , BROOKS C , et al . Multi-sensor terrain estimation for planetary rovers [C]. Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS) , 2003 : 1 - 8 .
IAGNEMMA K , SHIBLY H , DUBOWSKY S . On-line terrain parameter estimation for planetary rovers [C]. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292). Washington , DC , USA . IEEE , 2002 : 3142 - 3147 .
SHIBLY H , IAGNEMMA K , DUBOWSKY S . An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers [J]. Journal of Terramechanics , 2005 , 42 ( 1 ): 1 - 13 . doi: 10.1016/j.jterra.2004.05.002 http://dx.doi.org/10.1016/j.jterra.2004.05.002
CROSS M , ELLERY A , QADI A . Estimating terrain parameters for a rigid wheeled rover using neural networks [J]. Journal of Terramechanics , 2013 , 50 ( 3 ): 165 - 174 . doi: 10.1016/j.jterra.2013.04.002 http://dx.doi.org/10.1016/j.jterra.2013.04.002
HUTANGKABODEE S , ZWEIRI Y H , SENEVIRATNE L D , et al . Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction [J]. International Journal of Automation and Computing , 2006 , 3 ( 3 ): 244 - 251 . doi: 10.1007/s11633-006-0244-0 http://dx.doi.org/10.1007/s11633-006-0244-0
SENEVIRATNE L , ZWEIRI Y , HUTANGKABODEE S , et al . The modelling and estimation of driving forces for unmanned ground vehicles in outdoor terrain [J]. International Journal of Modelling, Identification and Control , 2009 , 6 ( 1 ): 40 . doi: 10.1504/ijmic.2009.023529 http://dx.doi.org/10.1504/ijmic.2009.023529
Jet Propulsion Laboratory . A Description of the Rover Sojourner [EB/OL]. ( 1997-07-08 )[ 2023-02-12 ]. https://mars.nasa.gov/MPF/rover/descrip.html https://mars.nasa.gov/MPF/rover/descrip.html . doi: 10.1002/9780471743989.vse10024 http://dx.doi.org/10.1002/9780471743989.vse10024
ELLERY A . Planetary Rovers : Robotic Exploration of the Solar System [M]. Springer , 2015 : 61 - 63 . doi: 10.1007/978-3-642-03259-2_13 http://dx.doi.org/10.1007/978-3-642-03259-2_13
邸凯昌 . 勇气号和机遇号火星车定位方法评述 [J]. 航天器工程 , 2009 , 18 ( 5 ): 1 - 5 . doi: 10.3969/j.issn.1673-8748.2009.05.001 http://dx.doi.org/10.3969/j.issn.1673-8748.2009.05.001
DI K C . A review of spirit and opportunity rover localization methods [J]. Spacecraft Engineering , 2009 , 18 ( 5 ): 1 - 5 . (in Chinese) . doi: 10.3969/j.issn.1673-8748.2009.05.001 http://dx.doi.org/10.3969/j.issn.1673-8748.2009.05.001
MAIMONE M , CHENG Y , MATTHIES L . Two years of visual odometry on the Mars exploration rovers [J]. Journal of Field Robotics , 2007 , 24 ( 3 ): 169 - 186 . doi: 10.1002/rob.20184 http://dx.doi.org/10.1002/rob.20184
JOHNSON A E , GOLDBERG S B , CHENG Y , et al . Robust and efficient stereo feature tracking for visual odometry [C]. 2008 IEEE International Conference on Robotics and Automation. Pasadena , CA, USA . IEEE , 2008 : 39 - 46 . doi: 10.1109/robot.2008.4543184 http://dx.doi.org/10.1109/robot.2008.4543184
CARSTEN J , RANKIN A , FERGUSON D , et al . Global path planning on board the Mars exploration rovers [C]. 2007 IEEE Aerospace Conference. Big Sky , MT , USA . IEEE , 2007 : 1 - 11 . doi: 10.1109/aero.2007.352683 http://dx.doi.org/10.1109/aero.2007.352683
CALLAS J . Mars exploration rover spirit end of mission report [R]. JPL Publication , 2015
ARVIDSON R E , IAGNEMMA K D , MAIMONE M , et al . Mars science laboratory curiosity rover megaripple crossings up to Sol 710 in gale crater [J]. Journal of Field Robotics , 2017 , 34 ( 3 ): 495 - 518 . doi: 10.1002/rob.21647 http://dx.doi.org/10.1002/rob.21647
HEVERLY M , MATTHEWS J , LIN J , et al . Traverse performance characterization for the Mars science laboratory rover [J]. Journal of Field Robotics , 2013 , 30 ( 6 ): 835 - 846 . doi: 10.1002/rob.21481 http://dx.doi.org/10.1002/rob.21481
BIESIADECKI J J , BAUMGARTNER E T , BONITZ R G , et al . Mars Exploration Rover surface operations: driving opportunity at Meridiani Planum [C]. 2005 IEEE International Conference on Systems, Man and Cybernetics. Waikoloa , HI, USA . IEEE , 2005 : 1823 - 1830 .
ONO M , FUCHS T J , STEFFY A , et al . Risk-aware planetary rover operation: autonomous terrain classification and path planning [C]. 2015 IEEE Aerospace Conference. Big Sky , MT , USA . IEEE , 2015 : 1 - 10 . doi: 10.1109/aero.2015.7119022 http://dx.doi.org/10.1109/aero.2015.7119022
YINGST R A , CROPPER K , GUPTA S , et al . Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from Sol 100 to 750: terrain types, potential sources, and transport mechanisms [J]. Icarus , 2016 , 280 : 72 - 92 . doi: 10.1016/j.icarus.2016.03.001 http://dx.doi.org/10.1016/j.icarus.2016.03.001
Emily Lakdawalla . Curiosity's Wheels Are Falling Apart (And How We Can Solve It) [EB/OL]. ( 2014-08-26 )[ 2023-02-12 ]. https://gizmodo.com/curiositys-wheels-are-falling-apart-and-how-we-can-sol-1626826935 https://gizmodo.com/curiositys-wheels-are-falling-apart-and-how-we-can-sol-1626826935
ZHOU F , ARVIDSON R E , BENNETT K , et al . Simulations of Mars rover traverses [J]. Journal of Field Robotics , 2014 , 31 ( 1 ): 141 - 160 . doi: 10.1002/rob.21483 http://dx.doi.org/10.1002/rob.21483
Kelly Heidman . Testing the Wheels of the Mars Curiosity Rover [EB/OL]. ( 2014-05-06 )[ 2023-02-12 ]. https://www.nasa.gov/content/testing-the-wheels-of-the-mars-curiosity-rover https://www.nasa.gov/content/testing-the-wheels-of-the-mars-curiosity-rover
ARVIDSON R E , Jr DEGROSSE P , GROTZINGER J P , et al . Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars [J]. Journal of Terramechanics , 2017 , 73 : 73 - 93 . doi: 10.1016/j.jterra.2017.03.001 http://dx.doi.org/10.1016/j.jterra.2017.03.001
SENATORE C , STEIN N , ZHOU F , et al . Modeling and validation of mobility characteristics of the mars science laboratory curiosity rover [C]. Proc. Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS) . 2014 .
WHITE C , ANTOUN G , BRUGAROLAS P , et al . System verification of MSL Skycrane using an integrated ADAMS simulation [C]. 2012 IEEE Aerospace Conference. Big Sky , MT , USA . IEEE , 2012 : 1 - 11 . doi: 10.1109/aero.2012.6186994 http://dx.doi.org/10.1109/aero.2012.6186994
William Harwood . NASA announces plans for new $ 1 . 5 billion Mars rover[EB/OL]. ( 2012-12-04 )[ 2023-02-12 ]. https://www.cnet.com/science/nasa-announces-plans-for-new-1-5-billion-mars- rover/ https://www.cnet.com/science/nasa-announces-plans-for-new-1-5-billion-mars-rover/
Mike Wall . NASA to Launch New Mars Rover in 2020 [EB/OL]. ( 2020-12-05 )[ 2023-02-12 ]. https://www.space.com/18763-nasa-new-mars-rover-2020.html https://www.space.com/18763-nasa-new-mars-rover-2020.html
Emily Lakdawalla . Curiosity wheel damage: The problem and solutions [EB/OL]. ( 2014-08-19 )[ 2023-02-12 ]. https://www.planetary.org/articles/08190630-curiosity-wheel-damage https://www.planetary.org/articles/08190630-curiosity-wheel-damage
NASA Science . MARS 2020 MISSION PERSEVERANCE ROVER [EB/OL].[ 2023-02-12 ]. https://mars.nasa.gov/mars2020/spacecraft/rover/wheels/ https://mars.nasa.gov/mars2020/spacecraft/rover/wheels/
Tony Greicius . NASA’s Self-Driving Perseverance Mars Rover 'Takes the Wheel' [EB/OL]. ( 2021-07-02 )[ 2023-02-12 ]. https://www.nasa.gov/feature/jpl/nasa-s-self-driving-perseverance-mars-rover-takes-the-wheel https://www.nasa.gov/feature/jpl/nasa-s-self-driving-perseverance-mars-rover-takes-the-wheel
NASA/JPL-C altech . Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission [EB/OL]. ( 2018-05-12 )[ 2023-02-12 ]. https://www.nasa.gov/press-release/mars-helicopter-to-fly-on-nasa-s-next-red-planet-rover-mission https://www.nasa.gov/press-release/mars-helicopter-to-fly-on-nasa-s-next-red-planet-rover-mission
NASA/JPL-C altech . Hear Sounds From Mars Captured by NASA's Perseverance Rover [EB/OL]. ( 2021-10-18 )[ 2023-02-12 ]. https://www.nasa.gov/feature/jpl/hear-sounds-from-mars-captured-by-nasa-s-perseverance-rover https://www.nasa.gov/feature/jpl/hear-sounds-from-mars-captured-by-nasa-s-perseverance-rover
张京男 , 徐菁 . 美国“毅力”火星车机械结构设计原理 [J]. 中国航天 , 2020 ( 8 ): 32 - 37 . doi: 10.3969/j.issn.1002-7742.2020.08.007 http://dx.doi.org/10.3969/j.issn.1002-7742.2020.08.007
ZHANG J N , XU J . Design principles of perseverance rover mechanical structure [J]. Aerospace China , 2020 ( 8 ): 32 - 37 . (in Chinese) . doi: 10.3969/j.issn.1002-7742.2020.08.007 http://dx.doi.org/10.3969/j.issn.1002-7742.2020.08.007
NASA中文爱好者团队 . 毅力号将用它的23只“眼睛”,观察充满未知的火星 [EB/OL]. ( 2020-05-15 )[ 2023-02-12 ]. https://www.sohu.com/a/395494958_313378 https://www.sohu.com/a/395494958_313378
袁宝峰 , 王成恩 , 邹猛 , 等 . 火星车主动悬架设计及蠕动脱困策略 [J]. 吉林大学学报(工学版) , 2021 , 51 ( 1 ): 154 - 162 . doi: 10.13229/j.cnki.Jdxbgxb20200604 http://dx.doi.org/10.13229/j.cnki.Jdxbgxb20200604
YUAN B F , WANG C G , ZOU M , et al . Design active suspension system and creeping control strategy for Mars rover of China [J]. Journal of Jilin University (Engineering and Technology Edition) , 2021 , 51 ( 1 ): 154 - 162 . (in Chinese) . doi: 10.13229/j.cnki.Jdxbgxb20200604 http://dx.doi.org/10.13229/j.cnki.Jdxbgxb20200604
潘冬 , 陈朕 , 袁宝峰 , 等 . 火星车沉陷机理与脱困策略研究 [J]. 机器人 , 2022 , 44 ( 1 ): 2 - 8 .
PAN D , CHEN Z , YUAN B F , et al . Sinkage mechanism and extrication strategy of Mars rover [J]. Robot , 2022 , 44 ( 1 ): 2 - 8 . (in Chinese)
CHRISTENSEN P R , MCSWEEN H Y , BANDFIELD J L , et al . Evidence for magmatic evolution and diversity on Mars from infrared observations [J]. Nature , 2005 , 436 ( 7050 ): 504 - 509 . doi: 10.1038/nature03639 http://dx.doi.org/10.1038/nature03639
ARVIDSON R E , ASHLEY J W , BELL III J F , et al . Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater [J]. Journal of Geophysical Research: Planets , 2011 , 116 ( E7 ). doi: 10.1029/2010je003746 http://dx.doi.org/10.1029/2010je003746
SEBASTIÁN E , ARMIENS C , GÓMEZ-ELVIRA J , et al . The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars [J]. Sensors (Basel, Switzerland) , 2010 , 10 ( 10 ): 9211 - 9231 . doi: 10.3390/s101009211 http://dx.doi.org/10.3390/s101009211
PÉREZ-IZQUIERDO J , SEBASTIÁN E , MARTÍNEZ GM , et al . The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis [J]. Measurement , 2018 , 122 : 432 - 442 . doi: 10.1016/j.measurement.2017.12.004 http://dx.doi.org/10.1016/j.measurement.2017.12.004
PARSONS A J , ABRAHAMS A D . Geomorphology of Desert Environments [M]. Geomorphology of Desert Environments. Dordrecht : Springer Netherlands , 1994 : 3 - 12 . doi: 10.1007/978-94-015-8254-4_1 http://dx.doi.org/10.1007/978-94-015-8254-4_1
CHHANIYARA S , BRUNSKILL C , YEOMANS B , et al . Terrain trafficability analysis and soil mechanical property identification for planetary rovers: a survey [J]. Journal of Terramechanics , 2012 , 49 ( 2 ): 115 - 128 . doi: 10.1016/j.jterra.2012.01.001 http://dx.doi.org/10.1016/j.jterra.2012.01.001
RANGARAJAN V G , BHARTI R , MONDAL S K , et al . Remote sensing for Martian studies: inferences from syrtis major [J]. Journal of the Indian Society of Remote Sensing , 2018 , 46 ( 9 ): 1537 - 1551 . doi: 10.1007/s12524-018-0826-7 http://dx.doi.org/10.1007/s12524-018-0826-7
CUNNINGHAM C , NESNAS I , WHITTAKER W L . Terrain traversability prediction by imaging thermal transients [C]. 2015 IEEE International Conference on Robotics and Automation. Seattle , WA , USA . IEEE , 2015 : 3947 - 3952 . doi: 10.1109/icra.2015.7139750 http://dx.doi.org/10.1109/icra.2015.7139750
CUNNINGHAM C , NESNAS I A , WHITTAKER W L . Improving slip prediction on Mars using thermal inertia measurements [J]. Autonomous Robots , 2019 , 43 ( 2 ): 503 - 521 . doi: 10.1007/s10514-018-9796-4 http://dx.doi.org/10.1007/s10514-018-9796-4
IWASHITA Y , NAKASHIMA K , GATTO J , et al . Virtual IR sensing for planetary rovers: improved terrain classification and thermal inertia estimation [J]. IEEE Robotics and Automation Letters , 2020 , 5 ( 4 ): 6302 - 6309 . doi: 10.1109/lra.2020.3013909 http://dx.doi.org/10.1109/lra.2020.3013909
CUNNINGHAM C , WHITTAKER W , NESNAS I . Detecting loose regolith in lunar craters using thermal imaging [C]. 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments . 1115,2016 , Orlando, Florida. Reston, VA, USA : American Society of Civil Engineers , 2016 : 16 - 26 . doi: 10.1061/9780784479971.003 http://dx.doi.org/10.1061/9780784479971.003
HIGA S , IWASHITA Y , OTSU K , et al . Vision-based estimation of driving energy for planetary rovers using deep learning and terramechanics [J]. IEEE Robotics and Automation Letters , 2019 , 4 ( 4 ): 3876 - 3883 . doi: 10.1109/lra.2019.2928765 http://dx.doi.org/10.1109/lra.2019.2928765
HO K , PEYNOT T , SUKKARIEH S . Nonparametric traversability estimation in partially occluded and deformable terrain [J]. Journal of Field Robotics , 2016 , 33 ( 8 ): 1131 - 1158 . doi: 10.1002/rob.21646 http://dx.doi.org/10.1002/rob.21646
ROTHROCK B , KENNEDY R , CUNNINGHAM C , et al . SPOC: deep learning-based terrain classification for Mars rover missions [C]. AIAA SPACE 2016 . 13 - 16 September 2016, Long Beach, California. Reston, Virginia : AIAA , 2016 : 5539 . doi: 10.2514/6.2016-5539 http://dx.doi.org/10.2514/6.2016-5539
SKONIECZNY K , SHUKLA D K , FARAGALLI M , et al . Data-driven mobility risk prediction for planetary rovers [J]. Journal of Field Robotics , 2019 , 36 ( 2 ): 475 - 491 . doi: 10.1002/rob.21833 http://dx.doi.org/10.1002/rob.21833
0
浏览量
569
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构