浏览全部资源
扫码关注微信
1.合肥工业大学 仪器科学与光电工程学院,安徽 合肥 230009
2.测量理论与精密仪器安徽省重点实验室,安徽 合肥 230009
3.教育部安全关键工业测控技术工程研究中心,安徽 合肥 230009
[ "傅扬伟(1998-),男,安徽宣城人,硕士研究生,2020年于合肥工业大学获得学士学位,主要从事图像处理、深度学习方面的研究。E-mail: 2020110049@mail.hfut.edu.cn" ]
[ "张 进(1985-),男,安徽阜阳人,博士,教授,2010年于天津大学获得博士学位,主要从事视觉检测及动态测试方面的研究。E-mail:zhangjin@hfut.edu.cn" ]
收稿日期:2022-08-02,
修回日期:2022-09-19,
纸质出版日期:2023-03-25
移动端阅览
傅扬伟,张进,孙珍惜等.面向小目标测量的通道注意力网络与系统设计[J].光学精密工程,2023,31(06):962-973.
FU Yangwei,ZHANG Jin,SUN Zhenxi,et al.Design of channel attention network and system for micro target measurement[J].Optics and Precision Engineering,2023,31(06):962-973.
傅扬伟,张进,孙珍惜等.面向小目标测量的通道注意力网络与系统设计[J].光学精密工程,2023,31(06):962-973. DOI: 10.37188/OPE.20233106.0962.
FU Yangwei,ZHANG Jin,SUN Zhenxi,et al.Design of channel attention network and system for micro target measurement[J].Optics and Precision Engineering,2023,31(06):962-973. DOI: 10.37188/OPE.20233106.0962.
微器件广泛应用于电子工业。由于衍射效应,微器件的物理边缘与光学边缘不一致,这给检测和测量带来了挑战。为提高微目标检测与测量精度,本文将图像超分辨率重建与目标测量结合,提出了一种基于边缘增强的图像超分辨率重建算法并搭建了对应的测量系统。首先提出了一种新的图像超分辨率重建质量评价参数,证明了图像超分辨率重建提高目标测量精度的可行性。针对目标边缘,将通道注意力机制引入网络,增强了网络对图像边缘的重建能力。最后,设计并搭建了目标测量系统,并进行了实验。结果表明:在公开数据集上,本文算法能取得更高的峰值信噪比(PSNR)和结构相似性(SSIM)等客观指标值;在实际测量中,本文算法可将原有测量系统极限分辨率提高25.9%,目标测量精度平均提高51.6%。本文研究为工业生产中的微目标检测和测量提供了一个潜在的发展方向。
Microdevices are widely used in the electronic industry. However, the diffraction effect, which causes misalignments in the physical and optical edges of micro devices, brings challenges to detection and measurement. To address this issue, this study combines image super-resolution reconstruction with target measurement to propose an image super-resolution reconstruction algorithm based on edge enhancement and build a corresponding measurement system. In this study, a new quality evaluation parameter is proposed for image super-resolution reconstruction, to prove the feasibility of super-resolution reconstruction in improving target measurement accuracy. Aiming at the target edge, a channel attention mechanism is also introduced into the network to enhance its ability to reconstruct the image edge. Finally, the target measurement system is designed and built, and experiments are carried out. The results show that the proposed algorithm can achieve higher peak signal to noise ratio (PSNR) and structural similarity (SSIM) values on an open dataset. In real-world measurements, this algorithm improved the limit resolution of the original measurement system by 25.9% and the target measurement accuracy by 51.6%, on average. This study provides a potential direction for the development of micro-target detection and measurement in industrial production.
YU H . Image-type displacement measurement resolution improvement without magnification imaging [J]. Measurement Science and Technology , 2022 , 33 ( 1 ): 015103 . doi: 10.1088/1361-6501/ac2feb http://dx.doi.org/10.1088/1361-6501/ac2feb
王冬云 , 唐楚 , 鄂世举 , 等 . 基于导向滤波Retinex和自适应Canny的图像边缘检测 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 443 - 451 . doi: 10.37188/OPE.20212902.0443 http://dx.doi.org/10.37188/OPE.20212902.0443
WANG D Y , TANG CH , E SH J , et al . Image edge detection based on guided filter Retinex and adaptive Canny [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 443 - 451 . (in Chinese) . doi: 10.37188/OPE.20212902.0443 http://dx.doi.org/10.37188/OPE.20212902.0443
刘宇涵 , 闫河 , 陈早早 , 等 . 强噪声下自适应Canny算子边缘检测 [J]. 光学 精密工程 , 2022 , 30 ( 3 ): 350 - 362 . doi: 10.37188/OPE.20223003.0350 http://dx.doi.org/10.37188/OPE.20223003.0350
LIU Y H , YAN H , CHEN Z Z , et al . Adaptive Canny operator edge detection under strong noise [J]. Opt. Precision Eng. , 2022 , 30 ( 3 ): 350 - 362 . (in Chinese) . doi: 10.37188/OPE.20223003.0350 http://dx.doi.org/10.37188/OPE.20223003.0350
SHARMA S , VENTURA J , D’AMICO S . Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous [J]. Journal of Spacecraft and Rockets , 2018 , 55 ( 6 ): 1414 - 1429 . doi: 10.2514/1.a34124 http://dx.doi.org/10.2514/1.a34124
WANG W , LU X N , HE Z Z , et al . Using convolutional neural network for intelligent SAM inspection of flip chips [J]. Measurement Science and Technology , 2021 , 32 ( 11 ): 115022 . doi: 10.1088/1361-6501/ac1615 http://dx.doi.org/10.1088/1361-6501/ac1615
朱福珍 , 刘越 , 黄鑫 , 等 . 改进的稀疏表示遥感图像超分辨重建 [J]. 光学 精密工程 , 2019 , 27 ( 3 ): 718 - 725 . doi: 10.13482/j.issn1001-7011.2019.05.004 http://dx.doi.org/10.13482/j.issn1001-7011.2019.05.004
ZHU F ZH , LIU Y , HUANG X , et al . Remote sensing image super-resolution based on improved sparse representation [J]. Opt. Precision Eng. , 2019 , 27 ( 3 ): 718 - 725 . (in Chinese) . doi: 10.13482/j.issn1001-7011.2019.05.004 http://dx.doi.org/10.13482/j.issn1001-7011.2019.05.004
周涛 , 霍兵强 , 陆惠玲 , 等 . 融合多尺度图像的密集神经网络肺部肿瘤识别算法 [J]. 光学 精密工程 , 2021 , 29 ( 7 ): 1695 - 1708 . doi: 10.37188/OPE.20212907.1695 http://dx.doi.org/10.37188/OPE.20212907.1695
ZHOU T , HUO B Q , LU H L , et al . Lung tumor image recognition algorithm with densenet fusion multi-scale images [J]. Opt. Precision Eng. , 2021 , 29 ( 7 ): 1695 - 1708 . (in Chinese) . doi: 10.37188/OPE.20212907.1695 http://dx.doi.org/10.37188/OPE.20212907.1695
BLU T , THÉVENAZ P , UNSER M . Linear interpolation revitalized [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2004 , 13 ( 5 ): 710 - 719 . doi: 10.1109/tip.2004.826093 http://dx.doi.org/10.1109/tip.2004.826093
SCHULTZ R R , STEVENSON R L . Extraction of high-resolution frames from video sequences [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 1996 , 5 ( 6 ): 996 - 1011 . doi: 10.1109/83.503915 http://dx.doi.org/10.1109/83.503915
彭真明 , 景亮 , 何艳敏 , 等 . 基于多尺度稀疏字典的多聚焦图像超分辨融合 [J]. 光学 精密工程 , 2014 , 22 ( 1 ): 169 - 176 . doi: 10.3788/ope.20142201.0169 http://dx.doi.org/10.3788/ope.20142201.0169
PENG Z M , JING L , HE Y M , et al . Superresolution fusion of multi-focus image based on multiscale sparse dictionary [J]. Opt. Precision Eng. , 2014 , 22 ( 1 ): 169 - 176 . (in Chinese) . doi: 10.3788/ope.20142201.0169 http://dx.doi.org/10.3788/ope.20142201.0169
TANG Y , YUAN Y . Image pair analysis with matrix-value operator [J]. IEEE Transactions on Cybernetics , 2015 , 45 ( 10 ): 2042 - 2050 . doi: 10.1109/tcyb.2014.2363882 http://dx.doi.org/10.1109/tcyb.2014.2363882
DONG C , LOY C C , HE K M , et al . Learning a deep convolutional network for image super-resolution [J]. Computer Vision , 2014 : 184 - 199 . doi: 10.1007/978-3-319-10593-2_13 http://dx.doi.org/10.1007/978-3-319-10593-2_13
DONG C , LOY C C , TANG X O . Accelerating the super-resolution convolutional neural network [J]. Computer Vision , 2016 : 391 - 407 . doi: 10.1007/978-3-319-46475-6_25 http://dx.doi.org/10.1007/978-3-319-46475-6_25
KIM J , LEE J K , LEE K M . Accurate Image Super-Resolution Using Very Deep Convolutional Networks [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 1646 - 1654 . doi: 10.1109/cvpr.2016.182 http://dx.doi.org/10.1109/cvpr.2016.182
HE K M , ZHANG X Y , REN S Q , et al . Deep Residual Learning for Image Recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
谷雨 , 刘俊 , 沈宏海 , 等 . 基于改进多尺度分形特征的红外图像弱小目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1375 - 1386 . doi: 10.3788/ope.20202806.1375 http://dx.doi.org/10.3788/ope.20202806.1375
GU Y , LIU J , SHEN H H , et al . Infrared dim-small target detection based on an improved multiscale fractal feature [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1375 - 1386 . (in Chinese) . doi: 10.3788/ope.20202806.1375 http://dx.doi.org/10.3788/ope.20202806.1375
SZEGEDY C , LIU W , JIA Y Q , et al . Going Deeper with Convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 712,2015 , Boston, MA, USA. IEEE , 2015 : 1 - 9 . doi: 10.1109/cvpr.2015.7298594 http://dx.doi.org/10.1109/cvpr.2015.7298594
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [EB/OL]. 2014 : arXiv : 1409 . 1556 . https://arxiv.org/abs/1409.1556 https://arxiv.org/abs/1409.1556
HUANG G , LIU Z , VAN DER MAATEN L , et al . Densely Connected Convolutional Networks [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 2261 - 2269 . doi: 10.1109/cvpr.2017.243 http://dx.doi.org/10.1109/cvpr.2017.243
CHOI J S , KIM M . A Deep Convolutional Neural Network with Selection Units for Super-Resolution [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 1150 - 1156 . doi: 10.1109/cvprw.2017.153 http://dx.doi.org/10.1109/cvprw.2017.153
LIM B , SON S , KIM H , et al . Enhanced Deep Residual Networks for Single Image Super-Resolution [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 1132 - 1140 . doi: 10.1109/cvprw.2017.151 http://dx.doi.org/10.1109/cvprw.2017.151
朱威 , 王立凯 , 靳作宝 , 等 . 引入注意力机制的轻量级小目标检测网络 [J]. 光学 精密工程 , 2022 , 30 ( 8 ): 998 - 1010 . doi: 10.37188/OPE.20223008.0998 http://dx.doi.org/10.37188/OPE.20223008.0998
ZHU W , WANG L K , JIN Z B , et al . Lightweight small object detection network with attention mechanism [J]. Opt. Precision Eng. , 2022 , 30 ( 8 ): 998 - 1010 . (in Chinese) . doi: 10.37188/OPE.20223008.0998 http://dx.doi.org/10.37188/OPE.20223008.0998
鞠默然 , 罗海波 , 刘广琦 , 等 . 采用空间注意力机制的红外弱小目标检测网络 [J]. 光学 精密工程 , 2021 , 29 ( 4 ): 843 - 853 . doi: 10.37188/OPE.20212904.0843 http://dx.doi.org/10.37188/OPE.20212904.0843
JU M R , LUO H B , LIU G Q , et al . Infrared dim and small target detection network based on spatial attention mechanism [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 843 - 853 . (in Chinese) . doi: 10.37188/OPE.20212904.0843 http://dx.doi.org/10.37188/OPE.20212904.0843
SHI W Z , CABALLERO J , HUSZÁR F , et al . Real-time Single Image and Video Super-Resolution Using An Efficient Sub-Pixel Convolutional Neural Network [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 1874 - 1883 . doi: 10.1109/cvpr.2016.207 http://dx.doi.org/10.1109/cvpr.2016.207
LUO X T , XIE Y , ZHANG Y L , et al . LatticeNet: towards lightweight image super-resolution with lattice block [J]. Computer Vision , 2020 : 272 - 289 . doi: 10.1007/978-3-030-58542-6_17 http://dx.doi.org/10.1007/978-3-030-58542-6_17
0
浏览量
385
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构