浏览全部资源
扫码关注微信
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
[ "丁 元(1998-),男,甘肃陇南人,硕士研究生,2020年于兰州交通大学获得学士学位,主要从事计算机视觉的研究。E-mail: 710326055@qq.com" ]
[ "邬开俊(1978-),男,山东莒南人,博士,教授,博士生导师,2007年、2017年于兰州交通大学分别获得硕士和博士学位,主要从事机器视觉及神经元动力学的研究。E-mail: wkj@mail.lzjtu.cn" ]
收稿日期:2022-06-22,
修回日期:2022-09-26,
纸质出版日期:2023-04-10
移动端阅览
丁元,邬开俊.基于RGB色彩平衡方法的沙尘降质图像增强[J].光学精密工程,2023,31(07):1053-1064.
DING Yuan,WU Kaijun.Sand-dust image enhancement using RGB color balance method[J].Optics and Precision Engineering,2023,31(07):1053-1064.
丁元,邬开俊.基于RGB色彩平衡方法的沙尘降质图像增强[J].光学精密工程,2023,31(07):1053-1064. DOI: 10.37188/OPE.20233107.1053.
DING Yuan,WU Kaijun.Sand-dust image enhancement using RGB color balance method[J].Optics and Precision Engineering,2023,31(07):1053-1064. DOI: 10.37188/OPE.20233107.1053.
针对沙尘环境下室外图像存在的色差,低对比度以及低清晰度的问题,提出一种基于RGB色彩平衡方法的沙尘降质图像增强算法,该算法主要包括色彩校正、对比度提升两个任务。针对沙尘图像色彩分布的特殊性以及灰色世界算法的启示,提出了保持颜色分量均值的RGB色彩平衡方法(RGBCbm),使得RGB三通道分量根据颜色分量的均值进行拉伸,有效去除了图像中沙尘造成的色幕问题,进一步采用带色彩恢复的多尺度视网膜增强算法提高色彩校正结果;利用相对全局直方图拉伸算法结合Lab颜色模型对图像的对比度、色彩以及明亮度进行最后的增强和校正。对实验数据进行测试,结果表明,该算法可以有效解决各类沙尘降质图像的色差问题,并在提高图像色彩丰富性和对比度的同时增强图像细节的清晰度。与其他先进算法相比,水下图像质量指数和图像对比度指数分别达到了0.602和0.994,分别提高了0.140和0.018。
This paper proposes a dusty image enhancement algorithm based on the RGB color balance method to address the problem of color difference in low-contrast and low-definition outdoor images in dusty environments. The method mainly includes two tasks: color correction and contrast enhancement. First, in view of the particularity of the color distribution of dust images and the illumination mechanism assumed by the gray world algorithm, an RGB color balance method (RGBCbm) that maintains the mean value of the color component is proposed such that the RGB three-channel component is stretched according to the mean value of the color component, which effectively removes the color curtain problem caused by dust in images. The multi-scale retinal enhancement algorithm with color restoration (MSRCR) is further used to improve the color correction results. Subsequently, the relative global histogram stretching (RGHS) method combined with the Lab color model is used to enhance and correct the contrast, color, and brightness of the image. Test results and verification of the proposed algorithm on experimental data show that the algorithm can effectively solve the color difference problem in various dust-degraded images and enhance the clarity of image details while improving the color richness and contrast of the image. In the quantitative comparison with other advanced algorithms, the highest underwater image quality measure (UIQM) and image contrast index (Conl) reach 0.602 and 0.994, respectively, which are 0.140 and 0.018 higher than those of other algorithms.
SINGH D , KUMAR V . Single image haze removal using integrated dark and bright channel prior [J]. Modern Physics Letters B , 2018 , 32 ( 4 ): 1850051 . doi: 10.1142/s0217984918500513 http://dx.doi.org/10.1142/s0217984918500513
LIU W , HOU X X , DUAN J , et al . End-to-end single image fog removal using enhanced cycle consistent adversarial networks [J]. IEEE Transactions on Image Processing , 2020 , 29 : 7819 - 7833 . doi: 10.1109/tip.2020.3007844 http://dx.doi.org/10.1109/tip.2020.3007844
BU Q R , LUO J , MA K , et al . An enhanced pix2pix dehazing network with guided filter layer [J]. Applied Sciences , 2020 , 10 ( 17 ): 5898 . doi: 10.3390/app10175898 http://dx.doi.org/10.3390/app10175898
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
LAND E H . The retinex theory of color vision [J]. Scientific American , 1977 , 237 ( 6 ): 108 - 128 . doi: 10.1038/scientificamerican1277-108 http://dx.doi.org/10.1038/scientificamerican1277-108
LIU C , CHEN X Q , WU Y R . Modified grey world method to detect and restore colour cast images [J]. IET Image Processing , 2019 , 13 ( 7 ): 1090 - 1096 . doi: 10.1049/iet-ipr.2018.5523 http://dx.doi.org/10.1049/iet-ipr.2018.5523
ZUIDERVELD K . Contrast Limited Adaptive Histogram Equalization [M]. Graphics Gems . Amsterdam : Elsevier , 1994 : 474 - 485 . doi: 10.1016/b978-0-12-336156-1.50061-6 http://dx.doi.org/10.1016/b978-0-12-336156-1.50061-6
刘兴淼 , 王仕成 , 赵静 . 基于小波变换与模糊理论的图像增强算法研究 [J]. 弹箭与制导学报 , 2010 , 30 ( 4 ): 183 - 186 . doi: 10.3969/j.issn.1673-9728.2010.04.052 http://dx.doi.org/10.3969/j.issn.1673-9728.2010.04.052
LIU X M , WANG SH CH , ZHAO J . Image enhancement algorithm based on wavelet transform and fuzzy set theory [J]. Journal of Projectiles, Rockets, Missiles and Guidance , 2010 , 30 ( 4 ): 183 - 186 . (in Chinese) . doi: 10.3969/j.issn.1673-9728.2010.04.052 http://dx.doi.org/10.3969/j.issn.1673-9728.2010.04.052
YAN T , WANG L J , WANG J X . Method to enhance degraded image in dust environment [J]. Journal of Software , 2014 , 9 ( 10 ): 2672 - 2677 . doi: 10.4304/jsw.9.10.2672-2677 http://dx.doi.org/10.4304/jsw.9.10.2672-2677
WANG J , PANG Y W , HE Y Q , et al . Enhancement for Dust-sand Storm Images [M]. MultiMedia Modeling . Cham : Springer International Publishing , 2016 : 842 - 849 . doi: 10.1007/978-3-319-27671-7_70 http://dx.doi.org/10.1007/978-3-319-27671-7_70
SHI Z H , FENG Y N , ZHAO M H , et al . Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand-dust image enhancement [J]. IET Image Processing , 2020 , 14 ( 4 ): 747 - 756 . doi: 10.1049/iet-ipr.2019.0992 http://dx.doi.org/10.1049/iet-ipr.2019.0992
MCCARTNEY E J , HALL F F . Optics of the atmosphere: scattering by molecules and particles [J]. Physics Today , 1977 , 30 ( 5 ): 76 - 77 . doi: 10.1063/1.3037551 http://dx.doi.org/10.1063/1.3037551
YU S Y , ZHU H , WANG J , et al . Single sand-dust image restoration using information loss constraint [J]. Journal of Modern Optics , 2016 , 63 ( 21 ): 2121 - 2130 . doi: 10.1080/09500340.2016.1184340 http://dx.doi.org/10.1080/09500340.2016.1184340
GAO G X , LAI H C , JIA Z H , et al . Sand-dust image restoration based on reversing the blue channel prior [J]. IEEE Photonics Journal , 2020 , 12 ( 2 ): 1 - 16 . doi: 10.1109/jphot.2020.2975833 http://dx.doi.org/10.1109/jphot.2020.2975833
CAI B L , XU X M , JIA K , et al . DehazeNet: an end-to-end system for single image haze removal [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2016 , 25 ( 11 ): 5187 - 5198 . doi: 10.1109/tip.2016.2598681 http://dx.doi.org/10.1109/tip.2016.2598681
DIPTA DAS S , DUTTA S . Fast deep multi-patch hierarchical network for nonhomogeneous image dehazing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1419,2020 , Seattle, WA, USA. IEEE , 2020 : 1994 - 2001 . doi: 10.1109/cvprw50498.2020.00249 http://dx.doi.org/10.1109/cvprw50498.2020.00249
YU Y K , LIU H , FU M H , et al . A two-branch neural network for non-homogeneous dehazing via ensemble learning [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1925,2021 , Nashville, TN, USA. IEEE , 2021 : 193 - 202 . doi: 10.1109/cvprw53098.2021.00028 http://dx.doi.org/10.1109/cvprw53098.2021.00028
ZOTIN A . Fast algorithm of image enhancement based on multi-scale retinex [J]. Procedia Computer Science , 2018 , 131 ( C ): 6 - 14 . doi: 10.1016/j.procs.2018.04.179 http://dx.doi.org/10.1016/j.procs.2018.04.179
HUANG D M , WANG Y , SONG W , et al . Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition [M]. MultiMedia Modeling . Cham : Springer International Publishing , 2018 : 453 - 465 . doi: 10.1007/978-3-319-73603-7_37 http://dx.doi.org/10.1007/978-3-319-73603-7_37
SI Y Z , YANG F , GUO Y , et al . A comprehensive benchmark analysis for sand dust image reconstruction [J]. Journal of Visual Communication and Image Representation , 2022 , 89 : 103638 . doi: 10.1016/j.jvcir.2022.103638 http://dx.doi.org/10.1016/j.jvcir.2022.103638
STIPETIĆ V , LONČARIĆ S . Local gray world method for single image dehazing [C]. 8th International Conference on Signal, Image Processing and Pattern Recognition . Aircc Publishing Corporation , 2020 . doi: 10.5121/csit.2020.100202 http://dx.doi.org/10.5121/csit.2020.100202
GATTA C , RIZZI A , MARINI D . ACE:An automatic color equalization algorithm [C]. Conference on Colour in Graphics , 2002 , 316 - 320 .
王慧芳 , 陈远明 , 彭荣发 , 等 . 基于改进RGHS和Canny算子的水下图像边缘检测方法 [J]. 自动化与信息工程 , 2021 , 42 ( 2 ): 25 - 30 . doi: 10.3969/j.issn.1674-2605.2021.02.005 http://dx.doi.org/10.3969/j.issn.1674-2605.2021.02.005
WANG H F , CHEN Y M , PENG R F , et al . Underwater image edge detection method based on improved RGHS and canny operator [J]. Automation & Information Engineering , 2021 , 42 ( 2 ): 25 - 30 . (in Chinese) . doi: 10.3969/j.issn.1674-2605.2021.02.005 http://dx.doi.org/10.3969/j.issn.1674-2605.2021.02.005
CHIANG J Y , CHEN Y C . Underwater image enhancement by wavelength compensation and dehazing [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2012 , 21 ( 4 ): 1756 - 1769 . doi: 10.1109/tip.2011.2179666 http://dx.doi.org/10.1109/tip.2011.2179666
PARK T H , EOM I K . Sand-dust image enhancement using successive color balance with coincident chromatic histogram [J]. IEEE Access , 2021 , 9 : 19749 - 19760 . doi: 10.1109/access.2021.3054899 http://dx.doi.org/10.1109/access.2021.3054899
王春智 , 牛宏侠 . 基于直方图均衡化和MSRCR的沙尘降质图像增强算法 [J/OL]. 计算机工程 , 2021 : 1 - 10 . ( 2021-11-22 ). https://kns.cnki.net/kcms/detail/31.1289.TP.20211119.1949.016.html https://kns.cnki.net/kcms/detail/31.1289.TP.20211119.1949.016.html .
WANG C ZH , NIU H X . A sand-dust degraded image enhancement algorithm based on histogram equalization and MSRCR [J/OL]. Computer Engineering , 2021 : 1 - 10 . ( 2021-11-22 ). https://kns.cnki.net/kcms/detail/31.1289.TP.20211119. 1949.016.html. https://kns.cnki.net/kcms/detail/31.1289.TP.20211119.1949.016.html. (in Chinese)
KINGMA D P , BA J . Adam: a method for stochastic optimization [EB/OL]. 2014 : arXiv : 1412 . 6980 . https://arxiv.org/abs/1412.6980 https://arxiv.org/abs/1412.6980
PANETTA K , GAO C , AGAIAN S . Human-visual-system-inspired underwater image quality measures [J]. IEEE Journal of Oceanic Engineering , 2016 , 41 ( 3 ): 541 - 551 . doi: 10.1109/joe.2015.2469915 http://dx.doi.org/10.1109/joe.2015.2469915
YANG M , SOWMYA A . An underwater color image quality evaluation metric [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2015 , 24 ( 12 ): 6062 - 6071 . doi: 10.1109/tip.2015.2491020 http://dx.doi.org/10.1109/tip.2015.2491020
0
浏览量
823
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构