浏览全部资源
扫码关注微信
1.东北石油大学 电气信息工程学院,黑龙江 大庆 163318
2.东北石油大学秦皇岛校区 电气信息工程系,河北 秦皇岛 066004
[ "钟 慧(1996-),男,河南信阳人,硕士研究生, 2019年于河南城建学院获得学士学位,主要从事超精密测量、超分辨成像等方的研究。E-mail: zhfxjdwy@163.com" ]
[ "赵 忖(1980-),女,河北秦皇岛人,硕士,讲师,2003年、2006年于大庆石油学院分别获得学士、硕士学位,主要研究方向光电检测与信号处理 E-mail 48724332@qq.com" ]
[ "姜春雷(1977-),男,黑龙江青冈人,教授,博士生导师,2017年于哈尔滨工业大学获得博士学位,主要从事微纳光纤传感器、激光超精密测量与超显微成像等方面的理论及应用研究。E-mail: jiangchunlei_nepu@163.com" ]
收稿日期:2022-07-01,
修回日期:2022-09-27,
纸质出版日期:2023-04-25
移动端阅览
钟慧,高丙坤,党雨婷等.利用单光纤光镊实现不同折射率的微粒分选[J].光学精密工程,2023,31(08):1115-1123.
ZHONG Hui,GAO Bingkun,DANG Yuting,et al.Particle sorting with different refractive indices using single fiber optical tweezers[J].Optics and Precision Engineering,2023,31(08):1115-1123.
钟慧,高丙坤,党雨婷等.利用单光纤光镊实现不同折射率的微粒分选[J].光学精密工程,2023,31(08):1115-1123. DOI: 10.37188/OPE.20233108.1115.
ZHONG Hui,GAO Bingkun,DANG Yuting,et al.Particle sorting with different refractive indices using single fiber optical tweezers[J].Optics and Precision Engineering,2023,31(08):1115-1123. DOI: 10.37188/OPE.20233108.1115.
为解决在进行不同折射率的微粒分类时遇到的问题,本文提出了一种采用熔融法拉伸的抛物线型光纤探针,所得到的出射光场对于浸没在水溶液中的不同折射率的微粒具有不同的操作能力,可以达到微粒分类的目的。我们将波长为980 nm的激光通入光纤探针中,操控光纤在液体中实现对二氧化硅(SiO
2
)、聚苯乙烯(PS)和酵母菌细胞三种不同折射率的微粒及细胞的捕获和传输,进而实现不同微粒的分类。基本上实现了对三种微粒在1~10 μm范围内的操控和分类。通过仿真验证了这种抛物线型光纤探针对三种微粒具有不同捕获能力,所得到的理论和实验结果保持一致。使用该方法对微粒进行分类,可以简化实验装置,并且在无标签混合光纤传感器的开发和传染病检测或细胞分类等方面有广泛应用。
In order to solve the problems encountered in classifying particles with different refractive indices, this paper proposes a parabolic fiber optic probe stretched by the fusion method; the resulting outgoing light field has different operating capabilities for particles with different refractive indices submerged in aqueous solutions, which can be used for particle classification. We couple a laser beam with a wavelength of 980 nm into the fiber optic probe and manipulate the fiber to achieve the capture and transport of particles and cells with three different refractive indices in liquid: silicon dioxide (SiO
2
), polystyrene (PS), and yeast cells, and thus achieve the classification of different particles in the range of 1-10 μm. The different capture capabilities of this parabolic fiber optic probe for the three particles were simulated, and the obtained theoretical and experimental results were in agreement. The use of this method to classify particles simplifies the experimental setup and has a wide range of potential applications in the development of label-free hybrid fiber optic sensors, infectious disease detection, and cell classification.
DHOLAKIA K , ČIŽMÁR T . Shaping the future of manipulation [J]. Nature Photonics , 2011 , 5 ( 6 ): 335 - 342 . doi: 10.1038/nphoton.2011.80 http://dx.doi.org/10.1038/nphoton.2011.80
WANG D , BODOVITZ S . Single cell analysis: the new frontier in 'omics' [J]. Trends in Biotechnology , 2010 , 28 ( 6 ): 281 - 290 . doi: 10.1016/j.tibtech.2010.03.002 http://dx.doi.org/10.1016/j.tibtech.2010.03.002
PRADHAN M , PATHAK S , MATHUR D , et al . Optically trapping tumor cells to assess differentiation and prognosis of cancers [J]. Biomedical Optics Express , 2016 , 7 ( 3 ): 943 - 948 . doi: 10.1364/boe.7.000943 http://dx.doi.org/10.1364/boe.7.000943
AI Y K , ALALI H , PAN Y L , et al . Single-particle optical-trapping Raman spectroscopy for the detection and identification of aerosolized airborne biological particles [J]. Measurement Science and Technology , 2021 , 32 ( 5 ): 055207 . doi: 10.1088/1361-6501/abd5f1 http://dx.doi.org/10.1088/1361-6501/abd5f1
韩帅 , 张鑫杰 , 顾乔 , 等 . 非对称截面螺旋流道中微粒的惯性聚焦效应 [J]. 光学 精密工程 , 2022 , 30 ( 3 ): 310 - 319 .
HAN SH , ZHANG X J , GU Q , et al . Inertial focusing effect of particles in spiral microchannel with asymmetric cross-section [J]. Opt. Precision Eng. , 2022 , 30 ( 3 ): 310 - 319 . (in Chinese)
DHOLAKIA K , REECE P , GU M . Optical micromanipulation [J]. Chemical Society Reviews , 2008 , 37 ( 1 ): 42 - 55 . doi: 10.1039/b512471a http://dx.doi.org/10.1039/b512471a
GRIGORENKO A N , ROBERTS N W , DICKINSON M R , et al . Nanometric optical tweezers based on nanostructured substrates [J]. Nature Photonics , 2008 , 2 ( 6 ): 365 - 370 . doi: 10.1038/nphoton.2008.78 http://dx.doi.org/10.1038/nphoton.2008.78
ASHKIN A , DZIEDZIC J M , BJORKHOLM J E , et al . Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters , 1986 , 11 ( 5 ): 288 . doi: 10.1364/ol.11.000288 http://dx.doi.org/10.1364/ol.11.000288
林兴磊 , 付文升 , 邹永刚 , 等 . 多局域空心光阱及其光场调控 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 251 - 258 . doi: 10.37188/OPE.20212902.0251 http://dx.doi.org/10.37188/OPE.20212902.0251
LIN X L , FU W SH , ZOU Y G , et al . Multi-bottle beam optical trap and its light field regulation [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 251 - 258 . (in Chinese) . doi: 10.37188/OPE.20212902.0251 http://dx.doi.org/10.37188/OPE.20212902.0251
刘炳辉 , 杨立军 , 王扬 . 镀膜光纤探针近场捕获的模拟与实验 [J]. 光学 精密工程 , 2011 , 19 ( 10 ): 2355 - 2365 . doi: 10.3788/OPE.20111910.2355 http://dx.doi.org/10.3788/OPE.20111910.2355
LIU B H , YANG L J , WANG Y . Simulation and experiments of near-field trapping using metal-coated optical fiber probe [J]. Opt. Precision Eng. , 2011 , 19 ( 10 ): 2355 - 2365 . (in Chinese) . doi: 10.3788/OPE.20111910.2355 http://dx.doi.org/10.3788/OPE.20111910.2355
RODRIGUES RIBEIRO R S , SOPPERA O , OLIVA A G , et al . New trends on optical fiber tweezers [J]. Journal of Lightwave Technology , 2015 , 33 ( 16 ): 3394 - 3405 . doi: 10.1109/jlt.2015.2448119 http://dx.doi.org/10.1109/jlt.2015.2448119
NEUMAN K C , BLOCK S M . Optical trapping [J]. The Review of Scientific Instruments , 2004 , 75 ( 9 ): 2787 - 2809 . doi: 10.1063/1.1785844 http://dx.doi.org/10.1063/1.1785844
PAIVA J S , JORGE P A S , ROSA C C , et al . Optical fiber tips for biological applications: from light confinement, biosensing to bioparticles manipulation [J]. Biochimica et Biophysica Acta General Subjects , 2018 , 1862 ( 5 ): 1209 - 1246 . doi: 10.1016/j.bbagen.2018.02.008 http://dx.doi.org/10.1016/j.bbagen.2018.02.008
SANDERS M , LIN Y B , WEI J J , et al . An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers [J]. Biosensors & Bioelectronics , 2014 , 61 : 95 - 101 . doi: 10.1016/j.bios.2014.05.009 http://dx.doi.org/10.1016/j.bios.2014.05.009
JIANG M S , LI Q S , WANG J N , et al . Optical response of fiber-optic fabry-perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films [J]. Journal of Lightwave Technology , 2013 , 31 ( 14 ): 2321 - 2326 . doi: 10.1109/jlt.2013.2262022 http://dx.doi.org/10.1109/jlt.2013.2262022
ROSENBERGER M , BELLE S , HELLMANN R . Detection of biochemical reaction and dna hybridization using a planar bragg grating sensor [C]. SPIE Optics+Optoelectronics. Proc SPIE 8073 , Optical Sensors 2011; and Photonic Crystal Fibers V , Prague , Czech Republic. 2011, 8073 : 75 - 81 .
WANG G H , ZHENG X T , SHUM P P , et al . Live cell index sensing based on the reflection mode of tilted fiber tip with gold nanoparticles [C]. 9th International Conference on Optical Communications and Networks (ICOCN 2010). Nanjing , China. IET , 2010 : 116 - 119 . doi: 10.1049/cp.2010.1166 http://dx.doi.org/10.1049/cp.2010.1166
RODRIGUES RIBEIRO R S , DAHAL P , GUERREIRO A , et al . Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells [J]. Scientific Reports , 2017 , 7 : 4485 . doi: 10.1038/s41598-017-04490-2 http://dx.doi.org/10.1038/s41598-017-04490-2
CONSALES M , RICCIARDI A , CRESCITELLI A , et al . Lab-on-fiber technology: toward multifunctional optical nanoprobes [J]. ACS Nano , 2012 , 6 ( 4 ): 3163 - 3170 . doi: 10.1021/nn204953e http://dx.doi.org/10.1021/nn204953e
PAIVA J S , RIBEIRO R S R , JORGE P A S , et al . 2D Computational modeling of optical trapping effects on malaria-infected red blood cells [C]. Frontiers in Optics. Optica Publishing Group , 2017 : JTu2A-68. doi: 10.1364/fio.2017.jtu2a.68 http://dx.doi.org/10.1364/fio.2017.jtu2a.68
VAIANO P , CAROTENUTO B , PISCO M , et al . Lab on Fiber Technology for biological sensing applications [J]. Laser & Photonics Reviews , 2016 , 10 ( 6 ): 922 - 961 . doi: 10.1002/lpor.201600111 http://dx.doi.org/10.1002/lpor.201600111
LIU Z , TANG X , ZHANG Y , et al . Simultaneous trapping of low-index and high-index microparticles using a single optical fiber Bessel beam [J]. Optics and Lasers in Engineering , 2020 , 131 : 106119 . doi: 10.1016/j.optlaseng.2020.106119 http://dx.doi.org/10.1016/j.optlaseng.2020.106119
PAIVA J S , RIBEIRO R S R , CUNHA J P S , et al . Single particle differentiation through 2D optical fiber trapping and back-scattered signal statistical analysis: an exploratory approach [J]. Sensors (Basel, Switzerland) , 2018 , 18 ( 3 ): 710 . doi: 10.3390/s18030710 http://dx.doi.org/10.3390/s18030710
RODRIGUES S M , PAIVA J S , RIBEIRO R S R , et al . Fabrication of multimode-single mode polymer fiber tweezers for single cell trapping and identification with improved performance [J]. Sensors (Basel, Switzerland) , 2018 , 18 ( 9 ): 2746 . doi: 10.3390/s18092746 http://dx.doi.org/10.3390/s18092746
ASADOLLAHBAIK A , THIELE S , WEBER K , et al . Highly efficient dual-fiber optical trapping with 3D printed diffractive Fresnel lenses [J]. ACS Photonics , 2020 , 7 ( 1 ): 88 - 97 . doi: 10.1021/acsphotonics.9b01024 http://dx.doi.org/10.1021/acsphotonics.9b01024
BRADAC C . Nanoscale optical trapping: a review [J]. Advanced Optical Materials , 2018 , 6 ( 12 ): 1800005 . doi: 10.1002/adom.201800005 http://dx.doi.org/10.1002/adom.201800005
KOTLYAR V V , NALIMOV A G . Analytical expression for radiation forces on a dielectric cylinder illuminated by a cylindrical Gaussian beam [J]. Optics Express , 2006 , 14 ( 13 ): 6316 - 6321 . doi: 10.1364/oe.14.006316 http://dx.doi.org/10.1364/oe.14.006316
LIU Z H , GUO C K , YANG J , et al . Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application [J]. Optics Express , 2006 , 14 ( 25 ): 12510 - 12516 . doi: 10.1364/oe.14.012510 http://dx.doi.org/10.1364/oe.14.012510
0
浏览量
893
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构