浏览全部资源
扫码关注微信
1.哈尔滨工业大学 超精密光电仪器工程研究所,黑龙江 哈尔滨 150001
2.北京航天计量测试技术研究所,北京 100076
[ "缪寅宵(1974-),男,江苏南京人,研究员,1999年于中国运载火箭技术研究院获得硕士学位,主要从事几何量计量、光学精密测量技术及仪器等方面的研究。E-mail: miaoyx102@163.com" ]
[ "谭久彬(1955-),男,黑龙江阿城人,中国工程院院士,教授,博士生导师,1982年、1987年和1991年于哈尔滨工业大学分别获得学士、硕士和博士学位,主要从事超精密测量与仪器技术、超精密光机电一体化装备技术等研究。E-mail: jbtan@hit.edu.cn" ]
收稿日期:2022-12-13,
修回日期:2023-01-13,
纸质出版日期:2023-05-10
移动端阅览
缪寅宵,汪星宇,朱浩等.FMCW激光雷达几何结构精度模型与误差修正[J].光学精密工程,2023,31(09):1295-1303.
MIAO Yinxiao,WANG Xingyu,ZHU Hao,et al.Model establishment and error correction of FMCW lidar[J].Optics and Precision Engineering,2023,31(09):1295-1303.
缪寅宵,汪星宇,朱浩等.FMCW激光雷达几何结构精度模型与误差修正[J].光学精密工程,2023,31(09):1295-1303. DOI: 10.37188/OPE.20233109.1295.
MIAO Yinxiao,WANG Xingyu,ZHU Hao,et al.Model establishment and error correction of FMCW lidar[J].Optics and Precision Engineering,2023,31(09):1295-1303. DOI: 10.37188/OPE.20233109.1295.
为实现调频连续波(Frequency-modulated Continuous-wave,FMCW)激光雷达的高精度测量,针对激光雷达机械加工及装配过程中引入的几何结构误差,提出了基于激光雷达坐标测量误差的系统误差模型及误差修正方法。建立了激光雷达坐标系组,分析了空间坐标测量误差的来源。通过坐标系间的变换矩阵,实现了测量坐标的几何误差传递。然后,归并各坐标系的几何误差,建立了显式的激光雷达几何空间坐标误差表达式。并以此为基础,建立最小二乘优化目标,解算各项误差因子和修正后坐标。求得的误差因子可以用作后续坐标测量结果的修正。最后,基于该方法设计了一套以激光跟踪仪为高精度测量仪器、以靶球球心位置为标准点的标定场,使用激光跟踪仪与激光雷达测量相同位置的靶球完成系统误差修正。实验结果表明,经修正激光雷达空间距离测量的平均误差由0.044 8%下降到0.003 8%,误差极大值由4.17 mm下降到0.30 mm,验证了激光雷达几何结构误差标定和误差修正方法的有效性。
The geometry of frequency-modulated continuous-wave lidar deviates from that of the design model owing to the mechanical machining and assembly of the lidar. In this study, the effect of the sub-coordinate system offset and roll on the coordinate measurement accuracy of the instrument is investigated, and a correction model is developed for the geometric error of the lidar. This model can increase the measurement accuracy of the measurement system without changing the hardware structure of the system. First, a set of lidar coordinate systems is established, and the sources of spatial coordinate measurement errors are analyzed. The geometric error transfer of the measurement coordinates is achieved by applying the transformation matrix between the coordinate systems. Then, the geometric errors of the different coordinate systems are combined, and an explicit expression for the geometric spatial coordinate error of the lidar is established. Based on this, a least-squares optimization objective is established for obtaining the error factors and the corrected coordinates. The obtained error factors can be used as corrections for subsequent coordinate measurements. Finally, this method is used to design a calibration field with a laser tracker as the high-precision measurement instrument and the spherical center of the target sphere as the standard point. A system error correction experiment is performed by employing the laser tracker and lidar to evaluate the target sphere at the same position. The experimental results indicate that the average error of the lidar spatial distance measurement is reduced from 0.044 8% to 0.003 8% and the maximum error value is reduced from 4.17 to 0.30 mm after the correction, thereby confirming the effectiveness of the lidar geometric error calibration and error correction method.
GAO W , KIM S W , BOSSE H , et al . Measurement technologies for precision positioning [J]. CIRP Annals , 2015 , 64 ( 2 ): 773 - 796 . doi: 10.1016/j.cirp.2015.05.009 http://dx.doi.org/10.1016/j.cirp.2015.05.009
刘柯 , 张容卓 , 缪寅宵 , 等 . 调频激光雷达测量技术及在航空航天领域的应用 [J]. 宇航计测技术 , 2021 , 41 ( 4 ): 1 - 8 . doi: 10.12060/j.issn.1000-7202.2021.04.01 http://dx.doi.org/10.12060/j.issn.1000-7202.2021.04.01
LIU K , ZHANG R ZH , MIAO Y X , et al . Frequency-modulated laser radar measurement technology and application in the field of aeronautics and astronautics [J]. Journal of Astronautic Metrology and Measurement , 2021 , 41 ( 4 ): 1 - 8 . (in Chinese) . doi: 10.12060/j.issn.1000-7202.2021.04.01 http://dx.doi.org/10.12060/j.issn.1000-7202.2021.04.01
卢炤宇 , 葛春风 , 王肇颖 , 等 . 频率调制连续波激光雷达技术基础与研究进展 [J]. 光电工程 , 2019 , 46 ( 7 ): 7 - 20 .
LU ZH Y , GE CH F , WANG ZH Y , et al . Basics and developments of frequency modulation continuous wave LiDAR [J]. Opto-Electronic Engineering , 2019 , 46 ( 7 ): 7 - 20 . (in Chinese)
PEEK K . Estimation and Compensation of Frequency Sweep Nonlinearity in FMCW Radar [D]. University of Twente , 2011 .
WANG R R , WANG B N , XIANG M S , et al . Simultaneous time-varying vibration and nonlinearity compensation for one-period triangular-FMCW lidar signal [J]. Remote Sensing , 2021 , 13 ( 9 ): 1731 . doi: 10.3390/rs13091731 http://dx.doi.org/10.3390/rs13091731
邢达 , 郝红勋 . FMCW激光雷达精密测量技术及振动特性研究 [J]. 激光杂志 , 2022 , 43 ( 6 ): 75 - 79 .
XING D , HAO H X . Research on precision measurement technology and vibration characteristics of FMCW lidar [J]. Laser Journal , 2022 , 43 ( 6 ): 75 - 79 . (in Chinese)
MURALIKRISHNAN B , SAWYER D , BLACKBURN C , et al . ASME B89.4.19 performance evaluation tests and geometric misalignments in laser trackers [J]. Journal of Research of the National Institute of Standards and Technology , 2009 , 114 ( 1 ): 21 - 35 . doi: 10.6028/jres.114.003 http://dx.doi.org/10.6028/jres.114.003
张滋黎 , 朱涵 , 周维虎 . 激光跟踪仪转镜倾斜误差的标定及修正 [J]. 光学 精密工程 , 2015 , 23 ( 5 ): 1205 - 1212 . doi: 10.3788/ope.20152305.1205 http://dx.doi.org/10.3788/ope.20152305.1205
ZHANG Z L , ZHU H , ZHOU W H . Error calibration and correction of mirror tilt in laser trackers [J]. Opt. Precision Eng. , 2015 , 23 ( 5 ): 1205 - 1212 . (in Chinese) . doi: 10.3788/ope.20152305.1205 http://dx.doi.org/10.3788/ope.20152305.1205
徐良 , 娄志峰 , 田雨辰 , 等 . 三维激光球杆仪的系统误差分析与补偿 [J]. 仪表技术与传感器 , 2020 ( 3 ): 118 - 123 . doi: 10.3969/j.issn.1002-1841.2020.03.023 http://dx.doi.org/10.3969/j.issn.1002-1841.2020.03.023
XU L , LOU ZH F , TIAN Y CH , et al . Error analysis and compensation of 3D laser ball bar [J]. Instrument Technique and Sensor , 2020 ( 3 ): 118 - 123 . (in Chinese) . doi: 10.3969/j.issn.1002-1841.2020.03.023 http://dx.doi.org/10.3969/j.issn.1002-1841.2020.03.023
张晓龙 , 江昆 , 孙恺 , 等 . 激光雷达的内参建模与点云修正方法 [J]. 汽车工程 , 2021 , 43 ( 8 ): 1228 - 1237, 1253 .
ZHANG X L , JIANG K , SUN K , et al . Intrinsic parameters modeling for Li DAR and point cloud correction method [J]. Automotive Engineering , 2021 , 43 ( 8 ): 1228 - 1237, 1253 . (in Chinese)
赵海鹏 , 杜玉红 , 丁娟 , 等 . 移动机器人中激光雷达测距测角标定方法 [J]. 红外与激光工程 , 2019 , 48 ( 6 ): 371 - 378 . doi: 10.3788/irla201948.0630002 http://dx.doi.org/10.3788/irla201948.0630002
ZHAO H P , DU Y H , DING J , et al . LiDAR ranging angle measurement calibration method in mobile robot [J]. Infrared and Laser Engineering , 2019 , 48 ( 6 ): 371 - 378 . (in Chinese) . doi: 10.3788/irla201948.0630002 http://dx.doi.org/10.3788/irla201948.0630002
MURALIKRISHNAN B , RACHAKONDA P , LEE Vet al . Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target [J]. Measurement , 2017 , 111 : 60 - 68 . doi: 10.1016/j.measurement.2017.07.027 http://dx.doi.org/10.1016/j.measurement.2017.07.027
Giuseppe C . Grasping in Robotics [M]. Springer Science & Business Media , 2012 : 270 - 302 .
DUNN F , PARBERRY I . Rotation in Three Dimensions [M]. 3D Math Primer for Graphics and Game Development . CRC Press , 2011 : 217 - 294 . doi: 10.1201/b11152-8 http://dx.doi.org/10.1201/b11152-8
SAMEER A , KEIR M . Agarwal ceres solver [CP/DK]. 2012 ( 2022-03-28 )[ 2022-07-12 ]. https://github.com/ceres-solver/ceres-solver https://github.com/ceres-solver/ceres-solver .
0
浏览量
2487
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构