浏览全部资源
扫码关注微信
1.武汉科技大学 冶金装备及其控制教育部重点实验室,湖北 武汉 430081
2.武汉科技大学 机械传动与制造工程湖北省重点实验室,湖北 武汉 430081
3.武汉科技大学 精密制造研究院,湖北 武汉 430081
[ "郭永兴(1986-),男,河南汝南人,博士,副教授,博士生导师,IEEE高级会员,2014年于武汉理工大学光纤传感技术国家工程实验室获得博士学位,主要从事机器人光纤智能感知技术、光纤光栅传感理论与测试技术方面的研究。E-mail:yongxing_guo@wust.edu.cn" ]
[ "张 航(1998-),男,湖北仙桃人,硕士研究生,2019年于武汉科技大学获得学士学位,主要从事基于光纤光栅的形状测量技术的研究。E-mail:zhanghang0604@126.com" ]
收稿日期:2022-11-02,
修回日期:2022-12-07,
纸质出版日期:2023-05-10
移动端阅览
郭永兴,张航,熊丽等.基于光纤布拉格光栅的扑翼机器人三维扑动变形测量[J].光学精密工程,2023,31(09):1304-1313.
GUO Yongxing,ZHANG Hang,XIONG Li,et al.Fiber Bragg grating based 3D flutter deformation measurement of flapping wing robot[J].Optics and Precision Engineering,2023,31(09):1304-1313.
郭永兴,张航,熊丽等.基于光纤布拉格光栅的扑翼机器人三维扑动变形测量[J].光学精密工程,2023,31(09):1304-1313. DOI: 10.37188/OPE.20233109.1304.
GUO Yongxing,ZHANG Hang,XIONG Li,et al.Fiber Bragg grating based 3D flutter deformation measurement of flapping wing robot[J].Optics and Precision Engineering,2023,31(09):1304-1313. DOI: 10.37188/OPE.20233109.1304.
仿生扑翼飞行机器人的扑动变形测量对提高其飞行性能非常重要,而现有的数值仿真、立体视觉摄像和结构光投影等测量方法,存在边界条件难以确定、视觉遮挡等问题,因此提出了一种基于光纤光栅的接触式扑翼动态变形测量方法。设计了一种以聚酰亚胺薄膜为基底的光纤光栅柔性传感器,将柔性传感器以阵列的形式布设在扑翼表面监测翼面扑动的实时应变,并基于曲率的三维重建算法将实时应变数据重构为扑翼的实时三维形状。成功监测了一个室内稳定扑动周期内翼面的应变变化情况并开展三维变形分析,结果表明:扑翼扑动时翼面应变主要发生在支撑杆周围,下扑和上扑阶段的应变最大值分别为
-
50.6 με和98.1 με;翼面变形主要发生在翼面后缘,下扑和上扑阶段的变形最大值分别为
-
2.06 mm和4.02 mm。本研究为扑翼动态变形测量提供了技术支持,为提高扑翼机飞行性能提供了科学依据。
Bionic flapping-wing robots have become a global research hotspot because of their considerable potential in military and civilian applications. Measuring and analyzing the flapping deformation characteristics of flapping-wing robots are important for improving their flight performance, and these are challenging research topics in the field of flapping-wing robots. The existing measurement methods include numerical simulation, stereovision camera, and structured light projection measurement. There are problems with these techniques; e.g., it is difficult to determine the boundary conditions, and visual occlusion occurs. Therefore, a dynamic deformation measurement method of contact flapping wing based on a fiber Bragg grating is proposed in this paper. A fiber Bragg grating flexible sensor based on a polyimide film is designed. The flexible sensor is arranged on the flapping-wing surface in the form of an array to monitor the real-time strain of the surface. The real-time strain data are reconstructed into the real-time three-dimensional (3D) shape of the flapping wing by using a reconstruction algorithm based on curvature. The strain variation of the wing surface in a stable flapping period is monitored. Then, a 3D deformation analysis is performed. The results indicate that the flapping-wing surface strain mainly occurs around the support rod, and the maximum value in the flapping stage is –50.6 με and 98.1 με, respectively. The deformation of the flapping-wing surface mainly occurs at the trailing edge of the wing surface, and the maximum values of flapping down and flapping up are –2.06 and 4.02 mm, respectively. This study provides a new measurement idea and technique for the dynamic deformation measurement of flapping wings. Deformation monitoring under outdoor flight conditions will be performed later to provide a scientific basis for improving the flight performance of ornithopters.
袁昌盛 , 付金华 . 国际上微型飞行器的研究进展与关键问题 [J]. 航空兵器 , 2005 , 12 ( 6 ): 50 - 53 . doi: 10.3969/j.issn.1673-5048.2005.06.013 http://dx.doi.org/10.3969/j.issn.1673-5048.2005.06.013
YUAN CH SH , FU J H . Development and key technique of micro air vehicles [J]. Aero Weaponry , 2005 , 12 ( 6 ): 50 - 53 . (in Chinese) . doi: 10.3969/j.issn.1673-5048.2005.06.013 http://dx.doi.org/10.3969/j.issn.1673-5048.2005.06.013
MADANGOPAL R , KHAN Z A , AGRAWAL S K . Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics [J]. Journal of Mechanical Design , 2005 , 127 ( 4 ): 809 - 816 . doi: 10.1115/1.1899690 http://dx.doi.org/10.1115/1.1899690
MADANGOPAL R , KHAN Z A , AGRAWAL S K . Energetics-based design of small flapping-wing micro air vehicles [J]. ASME Transactions on Mechatronics , 2006 , 11 ( 4 ): 433 - 438 . doi: 10.1109/tmech.2006.878525 http://dx.doi.org/10.1109/tmech.2006.878525
LIU L , LI H D , ANG H S , et al . Numerical investigation of flexible flapping wings using computational fluid dynamics/computational structural dynamics method [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering , 2018 , 232 ( 1 ): 85 - 95 . doi: 10.1177/0954410016671343 http://dx.doi.org/10.1177/0954410016671343
VAN TRUONG T , NGUYEN Q V , LEE H . Bio-inspired flexible flapping wings with elastic deformation [J]. Aerospace , 2017 , 4 ( 3 ): 37 . doi: 10.3390/aerospace4030037 http://dx.doi.org/10.3390/aerospace4030037
ZHANG G J , SUN J H , CHEN D Z , et al . Flapping motion measurement of honeybee bilateral wings using four virtual structured-light sensors [J]. Sensors and Actuators A: Physical , 2008 , 148 ( 1 ): 19 - 27 . doi: 10.1016/j.sna.2008.06.025 http://dx.doi.org/10.1016/j.sna.2008.06.025
高峰 , 蒋国江 , 丰志伟 , 等 . 仿生变形飞行器多体动力学建模与仿真 [J]. 系统仿真技术 , 2020 , 16 ( 1 ): 32 - 36, 45 . doi: 10.3969/j.issn.1673-1964.2020.01.008 http://dx.doi.org/10.3969/j.issn.1673-1964.2020.01.008
GAO F , JIANG G J , FENG ZH W , et al . Dynamic modeling and simulation of morphing aerocraft [J]. System Simulation Technology , 2020 , 16 ( 1 ): 32 - 36, 45 . (in Chinese) . doi: 10.3969/j.issn.1673-1964.2020.01.008 http://dx.doi.org/10.3969/j.issn.1673-1964.2020.01.008
周超英 , 朱建阳 , 汪超 , 等 . 柔性扑翼气动性能的数值研究 [J]. 工程力学 , 2013 , 30 ( 5 ): 13 - 18 . doi: 10.6052/j.issn.1000-4750.2012.01.0028 http://dx.doi.org/10.6052/j.issn.1000-4750.2012.01.0028
ZHOU CH Y , ZHU J Y , WANG CH , et al . Numerical study on the effect of flexiblity of a flapping wing on its aerodynamic performance [J]. Engineering Mechanics , 2013 , 30 ( 5 ): 13 - 18 . (in Chinese) . doi: 10.6052/j.issn.1000-4750.2012.01.0028 http://dx.doi.org/10.6052/j.issn.1000-4750.2012.01.0028
段文博 , 昂海松 , 肖天航 . 主动变形扑翼飞行器的设计和风洞测力试验研究 [J]. 航空学报 , 2013 , 34 ( 3 ): 474 - 486 .
DUAN W B , ANG H S , XIAO T H . Design and wind tunnel test of an active morphing wing ornithopter [J]. Acta Aeronautica et Astronautica Sinica , 2013 , 34 ( 3 ): 474 - 486 . (in Chinese)
付鹏 . 微型扑翼飞行器风洞实验方法与应用研究 [D]. 西安 : 西北工业大学 , 2017 .
FU P . Research on Wind Tunnel Experimental Method and Application of Flapping-Wing Micro Air Vehicle [D]. Xi'an : Northwestern Polytechnical University , 2017 . (in Chinese)
PERCIN M , VAN OUDHEUSDEN B W , DE CROON G C H E , et al . Force generation and wing deformation characteristics of a flapping-wing micro air vehicle ‘DelFl y II’ in hovering flight [J]. Bioinspiration & Biomimetics , 2016 , 11 ( 3 ): 036014 . doi: 10.1088/1748-3190/11/3/036014 http://dx.doi.org/10.1088/1748-3190/11/3/036014
WEHMANN H N , HEEPE L , GORB S N , et al . Local deformation and stiffness distribution in fly wings [J]. Biology Open , 2019 , 8 ( 1 ): bio038299 . doi: 10.1242/bio.038299 http://dx.doi.org/10.1242/bio.038299
王超 . 基于光纤光栅传感器的软体机械臂三维形状检测方法 [J]. 化工自动化及仪表 , 2015 , 42 ( 10 ): 1130 - 1133 . doi: 10.3969/j.issn.1000-3932.2015.10.016 http://dx.doi.org/10.3969/j.issn.1000-3932.2015.10.016
WANG CH . 3D shapes detecting method of soft manipulator based on fiber Bragg grating sensor [J]. Control and Instruments in Chemical Industry , 2015 , 42 ( 10 ): 1130 - 1133 . (in Chinese) . doi: 10.3969/j.issn.1000-3932.2015.10.016 http://dx.doi.org/10.3969/j.issn.1000-3932.2015.10.016
YI J C , ZHU X J , ZHANG H S , et al . Spatial shape reconstruction using orthogonal fiber Bragg grating sensor array [J]. Mechatronics , 2012 , 22 ( 6 ): 679 - 687 . doi: 10.1016/j.mechatronics.2011.10.005 http://dx.doi.org/10.1016/j.mechatronics.2011.10.005
ROESTHUIS R J , KEMP M , VAN DEN DOBBELSTEEN J J , et al . Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors [J]. IEEE/ASME Transactions on Mechatronics , 2014 , 19 ( 4 ): 1115 - 1126 . doi: 10.1109/tmech.2013.2269836 http://dx.doi.org/10.1109/tmech.2013.2269836
祝连庆 , 孙广开 , 李红 , 等 . 智能柔性变形机翼技术的应用与发展 [J]. 机械工程学报 , 2018 , 54 ( 14 ): 28 - 42 . doi: 10.3901/JME.2018.14.028 http://dx.doi.org/10.3901/JME.2018.14.028
ZHU L Q , SUN G K , LI H , et al . Intelligent and flexible morphing wing technology: a review [J]. Journal of Mechanical Engineering , 2018 , 54 ( 14 ): 28 - 42 . (in Chinese) . doi: 10.3901/JME.2018.14.028 http://dx.doi.org/10.3901/JME.2018.14.028
ZHUANG W , SUN G K , LI H , et al . FBG based shape sensing of a silicone octopus tentacle model for soft robotics [J]. Optik , 2018 , 165 : 7 - 15 . doi: 10.1016/j.ijleo.2018.03.087 http://dx.doi.org/10.1016/j.ijleo.2018.03.087
张俊康 , 孙广开 , 李红 , 等 . 变形机翼薄膜蒙皮形状监测光纤传感方法研究 [J]. 仪器仪表学报 , 2018 , 39 ( 2 ): 66 - 72 . doi: 10.13873/J.1000-9787(2018)10-0019-03 http://dx.doi.org/10.13873/J.1000-9787(2018)10-0019-03
ZHANG J K , SUN G K , LI H , et al . Optical fiber shape sensing of polyimide skin for flexible morphing wing [J]. Chinese Journal of Scientific Instrument , 2018 , 39 ( 2 ): 66 - 72 . (in Chinese) . doi: 10.13873/J.1000-9787(2018)10-0019-03 http://dx.doi.org/10.13873/J.1000-9787(2018)10-0019-03
曲道明 , 孙广开 , 李红 , 等 . 变形机翼柔性蒙皮形状光纤传感及重构方法 [J]. 仪器仪表学报 , 2018 , 39 ( 1 ): 144 - 151 .
QU D M , SUN G K , LI H , et al . Optical fiber sensing and reconstruction method for morphing wing flexible skin shape [J]. Chinese Journal of Scientific Instrument , 2018 , 39 ( 1 ): 144 - 151 . (in Chinese)
RAHMAN N , DEATON N , SHENG J , et al . Modular FBG bending sensor for continuum neurosurgical robot [J]. IEEE Robotics and Automation Letters , 2019 , 4 ( 2 ): 1424 - 1430 . doi: 10.1109/lra.2019.2896451 http://dx.doi.org/10.1109/lra.2019.2896451
JÄCKLE S , EIXMANN T , SCHULZ-HILDEBRANDT H , et al . Fiber optical shape sensing of flexible instruments for endovascular navigation [J]. International Journal of Computer Assisted Radiology and Surgery , 2019 , 14 ( 12 ): 2137 - 2145 . doi: 10.1007/s11548-019-02059-0 http://dx.doi.org/10.1007/s11548-019-02059-0
郭永兴 , 杨跃辉 , 熊丽 , 等 . 植入光纤布拉格光栅的不同杨氏模量软体材料弯曲测量响应特性 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1634 - 1643 . doi: 10.3788/OPE.20202808.1634 http://dx.doi.org/10.3788/OPE.20202808.1634
GUO Y X , YANG Y H , XIONG L , et al . Response characteristics of fiber Bragg gratings embedded in soft materials with different Young's modulus for bending measurement [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1634 - 1643 . (in Chinese) . doi: 10.3788/OPE.20202808.1634 http://dx.doi.org/10.3788/OPE.20202808.1634
郭永兴 , 杨跃辉 , 熊丽 . 双层正交的光纤布拉格光栅柔性形状传感技术 [J]. 光学 精密工程 , 2021 , 29 ( 10 ): 2306 - 2315 . doi: 10.37188/OPE.20212910.2306 http://dx.doi.org/10.37188/OPE.20212910.2306
GUO Y X , YANG Y H , XIONG L . Double-layer orthogonal fiber Bragg gratings flexible shape sensing technology [J]. Opt. Precision Eng. , 2021 , 29 ( 10 ): 2306 - 2315 . (in Chinese) . doi: 10.37188/OPE.20212910.2306 http://dx.doi.org/10.37188/OPE.20212910.2306
张兴伟 , 周超英 , 谢鹏 . 扑翼柔性变形对悬停气动特性影响的数值研究 [J]. 哈尔滨工业大学学报 , 2012 , 44 ( 1 ): 115 - 119 . doi: 10.11918/j.issn.0367-6234.2012.01.023 http://dx.doi.org/10.11918/j.issn.0367-6234.2012.01.023
ZHANG X W , ZHOU CH Y , XIE P . Numerical study on the effect of flapping wing deformation on aerodynamic performance in hovering flight [J]. Journal of Harbin Institute of Technology , 2012 , 44 ( 1 ): 115 - 119 . (in Chinese) . doi: 10.11918/j.issn.0367-6234.2012.01.023 http://dx.doi.org/10.11918/j.issn.0367-6234.2012.01.023
0
浏览量
764
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构