浏览全部资源
扫码关注微信
南昌工程学院 江西省水信息协同感知与智能处理重点实验室,江西 南昌 330099
[ "徐晨光(1985-),男,江西抚州人,现为南昌工程学院信息工程学院教师,主要从事遥感影像处理方面的研究。E-mail: xcg@nit.edu.cn" ]
[ "邓承志(1980-),男,江西兴国人,教授,2008年于华中科技大学获得博士学位,现为南昌工程学院教务处处长,兼任江西省水信息协同感知与智能处理重点实验室副主任、江西省电子学会秘书长、中国高等学校电工学研究会江西分会副理事长、江西省人工智能学会理事,主要从事遥感影像处理、图像处理方面的研究。E-mail: dengcz@nit.edu.cn" ]
收稿日期:2022-05-18,
修回日期:2022-07-08,
纸质出版日期:2023-05-10
移动端阅览
徐晨光,徐洪雨,郁春艳等.Framelet变换高光谱图像光谱加权稀疏解混[J].光学精密工程,2023,31(09):1404-1417.
XU Chenguang,XU Hongyu,YU Chunyan,et al.Spectral weighted sparse unmixing of hyperspectral images based on framelet transform[J].Optics and Precision Engineering,2023,31(09):1404-1417.
徐晨光,徐洪雨,郁春艳等.Framelet变换高光谱图像光谱加权稀疏解混[J].光学精密工程,2023,31(09):1404-1417. DOI: 10.37188/OPE.20233109.1404.
XU Chenguang,XU Hongyu,YU Chunyan,et al.Spectral weighted sparse unmixing of hyperspectral images based on framelet transform[J].Optics and Precision Engineering,2023,31(09):1404-1417. DOI: 10.37188/OPE.20233109.1404.
空域中高光谱数据由于信息过于分散,冗余过多,且易受噪声的影响,其特征提取难度较大。为了提高高光谱图像解混的鲁棒性和稀疏性,提出了一种framelet变换高光谱图像光谱加权稀疏解混方法。介绍了高光谱稀疏解混和framelet变换方法的理论知识,接着利用framelet变换对高光谱图像解混建模,并且在该模型上加入变换域光谱加权稀疏正则项,提出framelet变换的高光谱图像光谱加权稀疏解混模型。最后,利用交替方向乘子法对模型进行求解。实验结果表明:信号与重建误差比(SRE)提高12.4%~1 045%,丰度重构正确率(
P
s
)保持在16%的误差内。与其他相关稀疏解混方法相比,本文提出的算法具有良好的抗噪性和稀疏性能,获得了更好的解混结果。
Hyperspectral sparse unmixing methods have attracted considerable attention, and most current sparse unmixing methods are implemented in the spatial domain; however, the hyperspectral data used by these methods complicate feature extraction owing to scattered information, redundancy, and noisy spatial signals. To improve the robustness and sparsity of the unmixing results of hyperspectral images, a spectral-weighted sparse unmixing method of hyperspectral images based on the framelet transform (SFSU) is proposed. First, we introduce the theoretical knowledge of hyperspectral sparse unmixing and the framelet transform. Following this, we develop a hyperspectral image unmixing model based on the framelet transform using this theory. In this model, a spectral-weighted sparse regularization term is added to construct the SFSU. Finally, to solve the SFSU model, an alternating direction method of multipliers is presented. According to the experimental results, the signal-to-reconstruction error ratio is found to increase by 12.4%-1 045%, and the probability of success (
P
s
) remains within 16% error. The proposed model demonstrates better anti-noise and sparse performance compared with other related sparse unmixing methods and yields better unmixing results.
KESHAVA N , MUSTARD J F . Spectral unmixing [J]. IEEE Signal Processing Magazine , 2002 , 19 ( 1 ): 44 - 57 . doi: 10.1109/79.974727 http://dx.doi.org/10.1109/79.974727
徐晨光 , 张绍泉 , 李璠 , 等 . 高光谱遥感图像光谱加权稀疏解混算法分析和比较 [J]. 南昌工程学院学报 , 2020 , 39 ( 6 ): 87 - 93 .
XU CH G , ZHANG SH Q , LI F , et al . Analysis and comparison of spectral weighted sparse unmixing algorithms of hyperspectral remote sensing images [J]. Journal of Nanchang Institute of Technology , 2020 , 39 ( 6 ): 87 - 93 . (in Chinese)
BOARDMAN J W . Automating spectral unmixing of AVIRIS data using convex geometry concepts [C]. Proc. of AVIRIS , 1993 : 11 - 14 .
张少磊 , 付光远 , 汪洪桥 , 等 . 基于向量总变差约束局部光谱解混的高光谱图像超分辨 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2683 - 2692 . doi: 10.3788/ope.20192712.2683 http://dx.doi.org/10.3788/ope.20192712.2683
ZHANG SH L , FU G Y , WANG H Q , et al . Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2683 - 2692 . (in Chinese) . doi: 10.3788/ope.20192712.2683 http://dx.doi.org/10.3788/ope.20192712.2683
张绍泉 , 黄志浩 , 邓承志 , 等 . 光谱加权协同稀疏和全变差正则化高光谱图像解混 [J]. 电子学报 , 2020 , 48 ( 12 ): 2453 - 2461 . doi: 10.3969/j.issn.0372-2112.2020.12.022 http://dx.doi.org/10.3969/j.issn.0372-2112.2020.12.022
ZHANG SH Q , HUANG ZH H , DENG CH ZH , et al . Spectral reweighted collaborative sparsity and total variation based hyperspectral unmixing method [J]. Acta Electronica Sinica , 2020 , 48 ( 12 ): 2453 - 2461 . (in Chinese) . doi: 10.3969/j.issn.0372-2112.2020.12.022 http://dx.doi.org/10.3969/j.issn.0372-2112.2020.12.022
BHATT J S , JOSHI M V . Deep learning in hyperspectral unmixing: a review [C]. IGARSS 2020 - 2020 IEEEInternational Geoscience and Remote Sensing Symposium . 262,2020 , Waikoloa , HI, USA . IEEE , 2021 : 2189 - 2192 . doi: 10.1109/igarss39084.2020.9324546 http://dx.doi.org/10.1109/igarss39084.2020.9324546
LI C , LI J , SUI C H , et al . Spatial-spectral nonlinear hyperspectral unmixing under complex noise [J]. IEEE Sensors Journal , 2022 , 22 ( 5 ): 4338 - 4346 . doi: 10.1109/jsen.2022.3143852 http://dx.doi.org/10.1109/jsen.2022.3143852
贾麒 , 廖守亿 , 张作宇 , 等 . 重加权稀疏非负矩阵分解的高光谱解混 [J]. 红外与激光工程 , 2020 , 49 ( S2 ): 283 - 299 .
JIA Q , LIAO SH Y , ZHANG Z Y , et al . Reweighted sparse nonnegative matrix decomposition for hyperspectral unmixing [J]. Infrared and Laser Engineering , 2020 , 49 ( S2 ): 283 - 299 . (in Chinese)
徐晨光 , 邓承志 , 朱华生 . 近似稀疏约束的多层非负矩阵分解高光谱解混 [J]. 红外与激光工程 , 2018 , 47 ( 11 ): 265 - 273 . doi: 10.3788/irla201847.1117010 http://dx.doi.org/10.3788/irla201847.1117010
XU CH G , DENG CH ZH , ZHU H SH . Approximate sparse regularized multilayer NMF for hyperspectral unmixing [J]. Infrared and Laser Engineering , 2018 , 47 ( 11 ): 265 - 273 . (in Chinese) . doi: 10.3788/irla201847.1117010 http://dx.doi.org/10.3788/irla201847.1117010
IORDACHE M D , PLAZA A , BIOUCAS-DIAS J . On the use of spectral libraries to perform sparse unmixing of hyperspectral data [C]. 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing . 1416,2010 , Reykjavik , Iceland . IEEE , 2010 : 1 - 4 . doi: 10.1109/whispers.2010.5594888 http://dx.doi.org/10.1109/whispers.2010.5594888
WANG P , SHEN X , NI K , et al . Hyperspectral sparse unmixing based on multiple dictionary pruning [J]. International Journal of Remote Sensing , 2022 , 43 ( 7 ): 2712 - 2734 . doi: 10.1080/01431161.2022.2068358 http://dx.doi.org/10.1080/01431161.2022.2068358
BIOUCAS-DIAS J M , FIGUEIREDO M A T . Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing [C]. 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing . 1416,2010 , Reykjavik , Iceland . IEEE , 2010 : 1 - 4 . doi: 10.1109/whispers.2010.5594963 http://dx.doi.org/10.1109/whispers.2010.5594963
IORDACHE M D , BIOUCAS-DIAS J M , PLAZA A . Collaborative sparse regression for hyperspectral unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 1 ): 341 - 354 . doi: 10.1109/tgrs.2013.2240001 http://dx.doi.org/10.1109/tgrs.2013.2240001
ZHENG C Y , LI H , WANG Q , et al . Reweighted sparse regression for hyperspectral unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing , 2016 , 54 ( 1 ): 479 - 488 . doi: 10.1109/tgrs.2015.2459763 http://dx.doi.org/10.1109/tgrs.2015.2459763
李忠伟 , 张浩 , 王雷全 , 等 . 融合空谱-梯度特征的深度高光谱图像去噪 [J]. 光学 精密工程 , 2022 , 30 ( 5 ): 615 - 629 . doi: 10.37188/ope.2021.0485 http://dx.doi.org/10.37188/ope.2021.0485
LI ZH W , ZHANG H , WANG L Q , et al . Deep hyperspectral image denoising by fusing space spectrum-gradient features [J]. Opt. Precision Eng. , 2022 , 30 ( 5 ): 615 - 629 . (in Chinese) . doi: 10.37188/ope.2021.0485 http://dx.doi.org/10.37188/ope.2021.0485
XU C G , WU Z M , LI F , et al . Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform [J]. Infrared Physics & Technology , 2021 , 112 : 103564 . doi: 10.1016/j.infrared.2020.103564 http://dx.doi.org/10.1016/j.infrared.2020.103564
RAPIN J , BOBIN J , LARUE A , et al . NMF with sparse regularizations in transformed domains [J]. SIAM Journal on Imaging Sciences , 2014 , 7 ( 4 ): 2020 - 2047 . doi: 10.1137/140952314 http://dx.doi.org/10.1137/140952314
ZHANG G X , XU Y Y , FANG F M . Framelet-based sparse unmixing of hyperspectral images [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2016 , 25 ( 4 ): 1516 - 1529 . doi: 10.1109/tip.2016.2523345 http://dx.doi.org/10.1109/tip.2016.2523345
CAI J F , CHAN R H , SHEN Z W . A framelet-based image inpainting algorithm [J]. Applied and Computational Harmonic Analysis , 2008 , 24 ( 2 ): 131 - 149 . doi: 10.1016/j.acha.2007.10.002 http://dx.doi.org/10.1016/j.acha.2007.10.002
JIANG T X , HUANG T Z , ZHAO X L , et al . Matrix factorization for low-rank tensor completion using framelet prior [J]. Information Sciences , 2018 , 436/437 : 403 - 417 . doi: 10.1016/j.ins.2018.01.035 http://dx.doi.org/10.1016/j.ins.2018.01.035
WANG R , LI H C , LIAO W Z , et al . Double reweighted sparse regression for hyperspectral unmixing [C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 1015,2016 , Beijing, China. IEEE , 2016 : 6986 - 6989 . doi: 10.1109/igarss.2016.7730822 http://dx.doi.org/10.1109/igarss.2016.7730822
刘敬 , 李青妍 , 刘逸 . 基于核加权类对准则的高光谱影像特征提取 [J]. 光学 精密工程 , 2021 , 29 ( 6 ): 1397 - 1405 . doi: 10.37188/OPE.20212906.1397 http://dx.doi.org/10.37188/OPE.20212906.1397
LIU J , LI Q Y , LIU Y . Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion [J]. Opt. Precision Eng. , 2021 , 29 ( 6 ): 1397 - 1405 . (in Chinese) . doi: 10.37188/OPE.20212906.1397 http://dx.doi.org/10.37188/OPE.20212906.1397
RASTI B , KOIRALA B , SCHEUNDERS P , et al . UnDIP: hyperspectral unmixing using deep image prior [J]. IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 15 . doi: 10.1109/tgrs.2021.3067802 http://dx.doi.org/10.1109/tgrs.2021.3067802
0
浏览量
1204
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构