浏览全部资源
扫码关注微信
1.哈尔滨理工大学 自动化学院,黑龙江 哈尔滨 150080
2.哈尔滨理工大学 黑龙江省复杂智能系统与集成重点实验室,黑龙江 哈尔滨 150040
[ "杨 柳(1985-),女,黑龙江哈尔滨人,博士,副教授,硕士生导师,博士学位,主要从事微振动、纳米驱动器定位控制、机器人技术等方面的研究。E-mail:yangliuheu@gmail.com" ]
石树先(1998-),男,黑龙江伊春人,硕士研究生,2020年于哈尔滨理工大学获得学士学位,主要从事压电驱动平台动力学建模与跟踪控制等方面研究。E-mail:2212202914@qq.com
收稿日期:2022-11-16,
修回日期:2022-11-28,
纸质出版日期:2023-05-25
移动端阅览
杨柳,石树先,李东洁.多延时输入下压电驱动器迟滞建模及实验验证[J].光学精密工程,2023,31(10):1501-1508.
YANG Liu,SHI Shuxian,LI Dongjie.Hysteresis modeling and experimental verification of piezoelectric actuators with multi-delay input[J].Optics and Precision Engineering,2023,31(10):1501-1508.
杨柳,石树先,李东洁.多延时输入下压电驱动器迟滞建模及实验验证[J].光学精密工程,2023,31(10):1501-1508. DOI: 10.37188/OPE.20233110.1501.
YANG Liu,SHI Shuxian,LI Dongjie.Hysteresis modeling and experimental verification of piezoelectric actuators with multi-delay input[J].Optics and Precision Engineering,2023,31(10):1501-1508. DOI: 10.37188/OPE.20233110.1501.
压电陶瓷驱动器(PEAs)是一种多用于在精密仪器仪表中实现高速、高精度定位的智能驱动器。然而,其自身存在迟滞、蠕变等非线性,尤其是迟滞特性严重影响了压电驱动器的的控制精度。针对迟滞建模中的不对称和速率相关问题,提出一种多延时输入Prandtl-Ishlinskii(MDPI)模型,基于传统PI模型引入了一组延时输入来描述迟滞的率相关特性,随后加入了偏移系数用于改善模型的非对称性。最后,在压电微运动平台上采集了1~100 Hz的1 V正弦信号实验数据,并与率相关PI模型和动态延迟PI模型进行了模型精度对比。实验结果表明,相比另外两个动态PI模型,该模型能够更准确地描述PEAs的动态特性和迟滞特性。在50 Hz和100 Hz下,MDPI模型最大绝对误差(MAE)分别为0.081 5 μm和0.142 9 μm,均方根误差(RMSE)分别为0.009 5 μm,0.011 9 μm。相较二者该模型均方根误差精度分别平均提高了72.46%和64.21%。
Piezoelectric actuators (PEAs) are smart drivers that are widely employed in precision instruments to achieve high-speed, high-precision positioning. However, the nonlinear properties of PEAs, such as creep and, particularly, hysteresis, seriously affect their control precision. This paper proposes a multiple delay-input Prandtl–Ishlinskii (MDPI) model to solve the offset and rate-dependent issues encountered during modeling. Notably, the MDPI model has a set of rate-dependent dynamic factors, and offset coefficients are added to improve the asymmetry of the model. Next, experimental data of 1 V sinusoidal signals ranging from 1 to 100 Hz are collected on the piezoelectric micro-motion platform, and the accuracy of the model is compared with that of rate-dependent and dynamic delay PI models. The experimental results indicate that the MDPI model describes the dynamic and hysteresis characteristics of PEAs more accurately than the other two dynamic PI models. For input signal frequencies of 50 and 100 Hz, the maximum absolute errors of the MDPI model are 0.0815 and 0.1429 μm, and the root mean square errors (RMSEs) are 0.009 5 and 0.011 9 μm, respectively. Compared with the RMSE accuracies of the other two models, that of the MDPI model is improved by 72.46% and 64.21%, respectively.
CAI J N , CHEN F X , SUN L N , et al . Design of a linear walking stage based on two types of piezoelectric actuators [J]. Sensors and Actuators A: Physical , 2021 , 332 : 112067 . doi: 10.1016/j.sna.2020.112067 http://dx.doi.org/10.1016/j.sna.2020.112067
HABIBULLAH H . 30 Years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners [J]. Measurement , 2020 , 159 : 107776 . doi: 10.1016/j.measurement.2020.107776 http://dx.doi.org/10.1016/j.measurement.2020.107776
黄涛 , 罗治洪 , 陶桂宝 , 等 . 压电定位平台Hammerstein建模与反馈线性化控制 [J]. 光学 精密工程 , 2022 , 30 ( 14 ): 1716 - 1724 . doi: 10.37188/OPE.20223014.1716 http://dx.doi.org/10.37188/OPE.20223014.1716
HUANG T , LUO ZH H , TAO G B , et al . Hammerstein modeling and feedback linearization control for piezoelectric positioning stage [J]. Opt. Precision Eng. , 2022 , 30 ( 14 ): 1716 - 1724 . (in Chinese) . doi: 10.37188/OPE.20223014.1716 http://dx.doi.org/10.37188/OPE.20223014.1716
CHEN J , PENG G X , HU H , et al . Dynamic hysteresis model and control methodology for force output using piezoelectric actuator driving [J]. IEEE Access , 2020 , 8 : 205136 - 205147 . doi: 10.1109/access.2020.3037216 http://dx.doi.org/10.1109/access.2020.3037216
SON N N , VAN KIEN C , ANH H P H . Adaptive sliding mode control with hysteresis compensation-based neuroevolution for motion tracking of piezoelectric actuator [J]. Applied Soft Computing , 2022 , 115 : 108257 . doi: 10.1016/j.asoc.2021.108257 http://dx.doi.org/10.1016/j.asoc.2021.108257
JANAIDEH MAL , RAKOTONDRABE M . Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities [J]. Nonlinear Dynamics , 2021 , 104 ( 4 ): 3385 - 3405 . doi: 10.1007/s11071-021-06460-w http://dx.doi.org/10.1007/s11071-021-06460-w
朱炜 , 芮筱亭 . 压电执行器的Bouc-Wen模型在线参数辨识 [J]. 光学 精密工程 , 2015 , 23 ( 1 ): 110 - 116 . doi: 10.3788/ope.20152301.0110 http://dx.doi.org/10.3788/ope.20152301.0110
ZHU W , RUI X T . Online parameter identification of Bouc-Wen model for piezoelectric actuators [J]. Opt. Precision Eng. , 2015 , 23 ( 1 ): 110 - 116 . (in Chinese) . doi: 10.3788/ope.20152301.0110 http://dx.doi.org/10.3788/ope.20152301.0110
陈辉 , 谭永红 , 周杏鹏 , 等 . 压电陶瓷执行器的动态模型辨识与控制 [J]. 光学 精密工程 , 2012 , 20 ( 1 ): 88 - 95 . doi: 10.3788/ope.20122001.0088 http://dx.doi.org/10.3788/ope.20122001.0088
CHEN H , TAN Y H , ZHOU X P , et al . Identification and control of dynamic modeling for piezoceramic actuator [J]. Opt. Precision Eng. , 2012 , 20 ( 1 ): 88 - 95 . (in Chinese) . doi: 10.3788/ope.20122001.0088 http://dx.doi.org/10.3788/ope.20122001.0088
DENG M C , JIANG C G , INOUE A , et al . Operator-based robust control for nonlinear systems with Prandtl-Ishlinskii hysteresis [J]. International Journal of Systems Science , 2011 , 42 ( 4 ): 643 - 652 . doi: 10.1080/00207720903151318 http://dx.doi.org/10.1080/00207720903151318
SAYYAADI H , ZAKERZADEH M R . Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model [J]. Mechatronics , 2012 , 22 ( 7 ): 945 - 957 . doi: 10.1016/j.mechatronics.2012.06.003 http://dx.doi.org/10.1016/j.mechatronics.2012.06.003
GUO Z , TIAN Y , LIU X , et al . An inverse Prandtl-Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism [J]. Sensors and Actuators A: Physical , 2015 , 230 : 52 - 62 . doi: 10.1016/j.sna.2015.04.018 http://dx.doi.org/10.1016/j.sna.2015.04.018
AN D , YANG Y X , XU Y , et al . Compensation of hysteresis in the piezoelectric nanopositioning stage under reciprocating linear voltage based on a mark-segmented PI model [J]. Micromachines , 2019 , 11 ( 1 ): 9 . doi: 10.3390/mi11010009 http://dx.doi.org/10.3390/mi11010009
FENG Y , LI Y . System identification of micro piezoelectric actuators via rate-dependent Prandtl-ishlinskii hysteresis model based on a modified PSO algorithm [J]. IEEE Transactions on Nanotechnology , 2021 , 20 : 205 - 214 . doi: 10.1109/tnano.2020.3034965 http://dx.doi.org/10.1109/tnano.2020.3034965
WANG W , HAN F M , CHEN Z F , et al . Modeling and compensation for asymmetrical and dynamic hysteresis of piezoelectric actuators using a dynamic delay Prandtl-ishlinskii model [J]. Micromachines , 2021 , 12 ( 1 ): 92 . doi: 10.3390/mi12010092 http://dx.doi.org/10.3390/mi12010092
伍泓锦 , 段阳 , 杨浩林 , 等 . 基于李萨如图形的精确测量初相位差研究 [J]. 物理实验 , 2019 , 39 ( 12 ): 50 - 53 .
WU H J , DUAN Y , YANG H L , et al . Accurate measurement of initial phase difference by Lissajousfigure [J]. Physics Experimentation , 2019 , 39 ( 12 ): 50 - 53 . (in Chinese)
0
浏览量
112
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构