浏览全部资源
扫码关注微信
1.重庆理工大学 理学院,重庆 400054
2.四川云辰园林科技有限公司,四川 宜宾 644000
[ "陈亚芳(1998-),女,河南洛阳人,硕士研究生,2020年于重庆工商大学获得学士学位,主要从事机器视觉及目标检测方面的研究。E-mail: yafangchen@2020.cqut.edu.cn" ]
[ "廖 飞(1982-),男,湖北利川人,实验师,硕士生导师, 2009年于重庆大学获得硕士学位,主要从事智能光电子器件及系统、宽禁带半导体材料与器件的研究。Email:liaofei@cqut.edu.cn" ]
[ "龚恒翔(1971-),男,甘肃兰州人,理学博士,副高,硕士生导师, 2002年于兰州大学获得博士学位,主要研究方向金属氧化物薄膜材料制备设备、工艺与特性研究,分布式光伏新能源系统应用开发。E-mail:gonghx@cqut.edu.cn" ]
收稿日期:2022-09-09,
修回日期:2022-11-09,
纸质出版日期:2023-06-25
移动端阅览
陈亚芳,廖飞,黄新宇等.多尺度YOLOv5的太阳能电池缺陷检测[J].光学精密工程,2023,31(12):1804-1815.
CHEN Yafang,LIAO Fei,HUANY Xinyu,et al.Multi-scale YOLOv5 for solar cell defect detection[J].Optics and Precision Engineering,2023,31(12):1804-1815.
陈亚芳,廖飞,黄新宇等.多尺度YOLOv5的太阳能电池缺陷检测[J].光学精密工程,2023,31(12):1804-1815. DOI: 10.37188/OPE.20233112.1804.
CHEN Yafang,LIAO Fei,HUANY Xinyu,et al.Multi-scale YOLOv5 for solar cell defect detection[J].Optics and Precision Engineering,2023,31(12):1804-1815. DOI: 10.37188/OPE.20233112.1804.
为了实现电致发光(Electroluminescent,EL)条件下太阳能电池的高精度裂纹和碎片缺陷检测,将多尺度YOLOv5(You Only Look Once version 5)模型用于真实工况下的太阳能电池缺陷检测。首先,提出一种融合可变形卷积(Deformable Convolutional Networks Version 2,DCNv2)和坐标注意力(Coordinate Attention,CA)的改进特征提取网络,拓宽小目标缺陷的感受野,有效增强小尺度缺陷特征的提取。其次,提出一种名为CA-PANet的改进路径聚合网络(Path Aggregation Network,PANet),将CA与跨层级联整合在路径增强结构中,实现浅层特征的复用,使深层特征和浅层特征结合,增强不同尺度缺陷的特征融合,提高缺陷的特征表达能力,提升缺陷检测框的准确度。轻量级CA的计算成本低,保证了模型的实时性。实验结果表明,融合DCNv2与CA注意力的YOLOv5模型平均精度均值(Mean Average Precision, mAP)值可达95.4%,较YOLOv5模型提高3%,较YOLOX模型提高1.4%。每秒帧数(Frames Per Second, FPS)可达51,满足工业实时性需求。对比其它算法,改进YOLOv5模型能精确检测到太阳能电池的微裂纹和碎片缺陷,能满足光伏电站真实工况下的实时高精度缺陷检测需求。
Herein, to realize high-precision crack and break defect detection in solar cells under electroluminescent (EL) conditions, the multi-scale You Only Look Once version 5(YOLOv5) model is used for solar-cell defect detection under real industrial conditions. First, an improved feature-extraction network combining deformable convolution version 2 (DCNv2) and coordinate attention (CA) is proposed to widen the receptive field of small target defects and enhance the extraction of small-scale defect features. Second, an improved path aggregation network (PANet), called CA-PANet, is proposed for integrating the CA and cross-layer cascade in a path aggregation network to multiplex shallow features. Notably, the CA-PANet combines deep and shallow features to enhance the feature fusion of defects at different scales, improve the feature representation of defects, and increase the defect detection accuracy. The low computational cost of the lightweight CA ensures the real-time performance of the model. Experimental results indicate that the mean average precision(mAP) of the YOLOv5 model combining DCNv2 and CA can reach 95.4%, which is 3% higher than that of the YOLOv5 model and 1.4% higher than that of the YOLOX model. The improved YOLOv5 model can achieve a frame rate of up to 51 frames per second(FPS), meeting industrial real-time requirements. Compared with other algorithms, the improved YOLOv5 model can accurately detect cracks and break defects in EL solar cells, satisfying the demand for real-time, high-precision defect detection under industrial conditions in photovoltaic power plants.
ÁHHERRAIZ , MARUGÁN AP , MÁRQUEZ FP . Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure [J]. Renewable Energy , 2020 , 153 : 334 - 348 . doi: 10.1016/j.renene.2020.01.148 http://dx.doi.org/10.1016/j.renene.2020.01.148
SU B Y , CHEN H Y , ZHOU Z . BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection [J]. IEEE Transactions on Industrial Electronics , 2022 , 69 ( 3 ): 3161 - 3171 . doi: 10.1109/tie.2021.3070507 http://dx.doi.org/10.1109/tie.2021.3070507
Chen H , Zhao H , Han D , et al . Structure-aware-based crack defect detection for multicrystalline solar cells [J]. Measurement , 2020 , 151 : 107170 . doi: 10.1016/j.measurement.2019.107170 http://dx.doi.org/10.1016/j.measurement.2019.107170
陶志勇 , 于子佳 , 林森 . PSO_SVM算法在太阳能电池板裂缝缺陷检测研究 [J]. 电子测量与仪器学报 , 2021 , 35 ( 1 ): 18 - 25 .
TAO Z Y , YU Z J , LIN S . Research on crack defect detection of solar cell based on PSO_SVM [J]. Journal of Electronic Measurement and Instrumentation , 2021 , 35 ( 1 ): 18 - 25 . (in Chinese)
RODRIGUEZ A , GONZALEZ C , FERNANDEZ A , et al . Automatic solar cell diagnosis and treatment [J]. Journal of Intelligent Manufacturing , 2021 , 32 ( 4 ): 1163 - 1172 . doi: 10.1007/s10845-020-01642-6 http://dx.doi.org/10.1007/s10845-020-01642-6
AKRAM MW , LI G , JIN Y , et al . CNN based automatic detection of photovoltaic cell defects in electroluminescence images [J]. Energy , 2019 , 189 : 116319 . doi: 10.1016/j.energy.2019.116319 http://dx.doi.org/10.1016/j.energy.2019.116319
SU B Y , CHEN H Y , CHEN P , et al . Deep learning-based solar-cell manufacturing defect detection with complementary attention network [J]. IEEE Transactions on Industrial Informatics , 2021 , 17 ( 6 ): 4084 - 4095 . doi: 10.1109/tii.2020.3008021 http://dx.doi.org/10.1109/tii.2020.3008021
ZHANG X , HAO Y , SHANGGUAN H , et al . Detection of surface defects on solar cells by fusing Multi-channel convolution neural networks [J]. Infrared Physics & Technology , 2020 , 108 : 103334 . doi: 10.1016/j.infrared.2020.103334 http://dx.doi.org/10.1016/j.infrared.2020.103334
NAKAZAWA T , KULKARNI D V . Anomaly detection and segmentation for wafer defect patterns using deep convolutional encoder-decoder neural network architectures in semiconductor manufacturing [J]. IEEE Transactions on Semiconductor Manufacturing , 2019 , 32 ( 2 ): 250 - 256 . doi: 10.1109/tsm.2019.2897690 http://dx.doi.org/10.1109/tsm.2019.2897690
SU B Y , YU L , YANG W . Event-Based High Frame-Rate Video Reconstruction with A Novel Cycle-Event Network [C]. 2020 IEEE International Conference on Image Processing (ICIP) . 25 - 28 , 2020, Abu Dhabi, United Arab Emirates. IEEE , 2020: 86 - 90 . doi: 10.1109/icip40778.2020.9191114 http://dx.doi.org/10.1109/icip40778.2020.9191114
王宸 , 张秀峰 , 刘超 , 等 . 改进YOLOv3的轮毂焊缝缺陷检测 [J]. 光学 精密工程 , 2021 , 29 ( 8 ): 1942 - 1954 . doi: 10.37188/OPE.20212908.1942 http://dx.doi.org/10.37188/OPE.20212908.1942
WANG C , ZHANG X F , LIU C , et al . Detection method of wheel hub weld defects based on the improved YOLOv3 [J]. Opt. Precision Eng. , 2021 , 29 ( 8 ): 1942 - 1954 . (in Chinese) . doi: 10.37188/OPE.20212908.1942 http://dx.doi.org/10.37188/OPE.20212908.1942
朱威 , 王立凯 , 靳作宝 , 等 . 引入注意力机制的轻量级小目标检测网络 [J]. 光学 精密工程 , 2022 , 30 ( 8 ): 998 - 1010 . doi: 10.37188/OPE.20223008.0998 http://dx.doi.org/10.37188/OPE.20223008.0998
ZHU W , WANG L K , JIN Z B , et al . Lightweight small object detection network with attention mechanism [J]. Opt. Precision Eng. , 2022 , 30 ( 8 ): 998 - 1010 . (in Chinese) . doi: 10.37188/OPE.20223008.0998 http://dx.doi.org/10.37188/OPE.20223008.0998
郭峰 , 朱启兵 , 黄敏 , 等 . 基于改进YOLOV4的陶瓷基板瑕疵检测 [J]. 光学 精密工程 , 2022 , 30 ( 13 ): 1631 - 1641 . doi: 10.37188/OPE.20223013.1631 http://dx.doi.org/10.37188/OPE.20223013.1631
GUO F , ZHU Q B , HUANG M , et al . Defect detection of ceramic substrate based on improved YOLOV4 [J]. Opt. Precision Eng. , 2022 , 30 ( 13 ): 1631 - 1641 . (in Chinese) . doi: 10.37188/OPE.20223013.1631 http://dx.doi.org/10.37188/OPE.20223013.1631
GE Z , LIU S , WANG F , et al . YOLOX: Exceeding YOLO Series in 2021 [EB/OL]. 2021 : arXiv : 2107 . 08430 . https://arxiv.org/abs/2107.08430 https://arxiv.org/abs/2107.08430
GUO M H , XU T X , LIU J J , et al . Attention mechanisms in computer vision: a survey [J]. Computational Visual Media , 2022 , 8 ( 3 ): 331 - 368 . doi: 10.1007/s41095-022-0271-y http://dx.doi.org/10.1007/s41095-022-0271-y
DAI J F , QI H Z , XIONG Y W , et al . Deformable Convolutional Networks [C]. 2017 IEEE International Conference on Computer Vision (ICCV) . 22 - 29 , 2017, Venice, Italy. IEEE , 2017: 764 - 773 . doi: 10.1109/iccv.2017.89 http://dx.doi.org/10.1109/iccv.2017.89
ZHU X Z , HU H , LIN S , et al . Deformable ConvNets V2: More Deformable, Better Results [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 15 - 20 , 2019, Long Beach, CA, USA. IEEE , 2020: 9300 - 9308 . doi: 10.1109/cvpr.2019.00953 http://dx.doi.org/10.1109/cvpr.2019.00953
HOU Q B , ZHOU D Q , FENG J S . Coordinate Attention for Efficient Mobile Network Design [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 20 - 25 , 2021, Nashville, TN, USA. IEEE , 2021: 13708 - 13717 . doi: 10.1109/cvpr46437.2021.01350 http://dx.doi.org/10.1109/cvpr46437.2021.01350
JUMABOEV S , JURAKUZIEV D , LEE M . Photovoltaics plant fault detection using deep learning techniques [J]. Remote Sensing , 2022 , 14 ( 15 ): 3728 . doi: 10.3390/rs14153728 http://dx.doi.org/10.3390/rs14153728
李经宇 , 杨静 , 孔斌 , 等 . 基于注意力机制的多尺度车辆行人检测算法 [J]. 光学 精密工程 , 2021 , 29 ( 6 ): 1448 - 1458 . doi: 10.37188/OPE.20212906.1448 http://dx.doi.org/10.37188/OPE.20212906.1448
LI J Y , YANG J , KONG B , et al . Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism [J]. Opt. Precision Eng. , 2021 , 29 ( 6 ): 1448 - 1458 . (in Chinese) . doi: 10.37188/OPE.20212906.1448 http://dx.doi.org/10.37188/OPE.20212906.1448
SUN T , XING H , CAO S , et al . A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network [J]. Energy Reports , 2022 , 8 : 1219 - 1229 . doi: 10.1016/j.egyr.2022.08.130 http://dx.doi.org/10.1016/j.egyr.2022.08.130
何自芬 , 陈光晨 , 王森 , 等 . 融合自注意力特征嵌入的夜间机场跑道异物入侵检测 [J]. 光学 精密工程 , 2022 , 30 ( 13 ): 1591 - 1605 . doi: 10.37188/OPE.20223013.1591 http://dx.doi.org/10.37188/OPE.20223013.1591
HE Z F , CHEN G CH , WANG S , et al . Detection of foreign object debris on night airport runway fusion with self-attentional feature embedding [J]. Opt. Precision Eng. , 2022 , 30 ( 13 ): 1591 - 1605 . (in Chinese) . doi: 10.37188/OPE.20223013.1591 http://dx.doi.org/10.37188/OPE.20223013.1591
WANG C Y , BOCHKOVSKIY A , LIAO H Y M . YOLOv7: Trainable Bag-Of-Freebies Sets New State-Of-The-Art For Real-Time Object Detectors [EB/OL]. 2022 : arXiv : 2207 . 02696 . https://arxiv.org/abs/2207.02696 https://arxiv.org/abs/2207.02696
中国光伏行业协会 . 中国光伏行业协会标准 [EB/OL]. ( 2020-08-14 )[ 2022-11-10 ]. http://www.chinapv.org.cn/standard_list/772.html http://www.chinapv.org.cn/standard_list/772.html .
CPIA . China Photovoltaic Industry Association Standards [EB/OL]. ( 2020-08-14 )[ 2022-11-10 ]. http://www.chinapv.org.cn/standard_list/772.html. http://www.chinapv.org.cn/standard_list/772.html. (in Chinese)
0
浏览量
204
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构