浏览全部资源
扫码关注微信
1.福州大学 机械工程及自动化学院,福建 福州 350116
2.福州大学先进技术创新研究院,福建 福州 350116
[ "吴 靖(1986-),男,福建人,博士,教授,2009年于北京航空航天大学获得学士学位,2016年于北京航空航天大学获得博士学位,现为福州大学机械工程及自动化学院副教授,主要从事光学流动成像、人工智能图像处理。E-mail: wujing@fzu.edu.cn" ]
收稿日期:2022-11-05,
修回日期:2022-11-15,
纸质出版日期:2023-06-25
移动端阅览
吴靖,宋文杰,郭翠霞等.基于偏振度优化与大气光校正的图像去雾[J].光学精密工程,2023,31(12):1827-1840.
WU Jing,SONG Wenjie,GUO Cuixia,et al.Image dehazing based on polarization optimization and atmosphere light correction[J].Optics and Precision Engineering,2023,31(12):1827-1840.
吴靖,宋文杰,郭翠霞等.基于偏振度优化与大气光校正的图像去雾[J].光学精密工程,2023,31(12):1827-1840. DOI: 10.37188/OPE.20233112.1827.
WU Jing,SONG Wenjie,GUO Cuixia,et al.Image dehazing based on polarization optimization and atmosphere light correction[J].Optics and Precision Engineering,2023,31(12):1827-1840. DOI: 10.37188/OPE.20233112.1827.
为提高偏振去雾算法对雾气场景的恢复能力,提出一种偏振度优化与大气光校正的偏振图像去雾算法。首先,依据雾气场景亮度分布,使用导向滤波将雾气图像分解为亮面残差和暗面残差;其次,扩大亮面残差对应的偏振度值,削减暗面残差对应的偏振度值以优化偏振度,该偏振度可将大气光图像模糊;最后,利用偏振度在亮面和暗面残差上的差异,对大气光强度进行校正,以使其随雾气的变化规律满足大气退化模型。实验结果表明:本文算法的去雾图像相较原雾气图像,对比度提高3.07倍、信息熵提高9.21%、标准差提高61.86%。且在不同浓度模拟雾气环境中,本文算法都有较为优异的SSIM、PSNR和CIEDE2000。相较于现有先进图像去雾算法,本文算法去雾效果明显,可以有效地复原雾气中场景的细节信息。
To improve the recovery ability of polarization dehazing algorithms in fog scenes, a polarization image dehazing algorithm based on polarization optimization and atmospheric light correction is proposed. First, according to the brightness distribution of the fog scene, the fog image was decomposed into bright residuals and dark residuals via guided filtering. Second, to optimize the degree of polarization, the degrees of polarization corresponding to the bright and dark residuals were increased and decreased, respectively. This optimized degree of polarization can blur the atmospheric light image. The difference value of the degree of polarization in the residuals was used to correct the atmospheric light for ensuring its intensity range met the atmospheric degradation model. Experiments indicated that the contrast ratio was 3.07 times that in original hazy images after dehazing and that the entropy and standard deviation of dehazed images were increased by 9.21% and 61.86%, respectively. In environments with different concentrations of simulated fog, the proposed algorithm achieved excellent SSIM, CIEDE2000, and PSNR values. Compared with the state-of-art dehazing algorithms, the effect of the proposed algorithm was obvious, and it recovered the scene details efficiently.
杨燕 , 梁小珍 , 张金龙 . 分离特征和协同网络下的端到端图像去雾 [J]. 光学 精密工程 , 2021 , 29 ( 8 ): 1931 - 1941 . doi: 10.37188/OPE.2021.0003 http://dx.doi.org/10.37188/OPE.2021.0003
YANG Y , LIANG X Z , ZHANG J L . End-to-end image dehazing under separated features and collaborative network [J]. Opt. Precision Eng. , 2021 , 29 ( 8 ): 1931 - 1941 . (in Chinese) . doi: 10.37188/OPE.2021.0003 http://dx.doi.org/10.37188/OPE.2021.0003
傅妍芳 , 尹诗白 , 邓箴 , 等 . 多级特征逐步细化及边缘增强的图像去雾 [J]. 光学 精密工程 , 2022 , 30 ( 9 ): 1091 - 1100 . doi: 10.37188/OPE.20223009.1091 http://dx.doi.org/10.37188/OPE.20223009.1091
FU Y F , YIN S B , DENG Z , et al . Multi-level features progressive refinement and edge enhancement network for image dehazing [J]. Opt. Precision Eng. , 2022 , 30 ( 9 ): 1091 - 1100 (in Chinese) . doi: 10.37188/OPE.20223009.1091 http://dx.doi.org/10.37188/OPE.20223009.1091
冯燕茹 . 双视觉注意网络的联合图像去雾和透射率估计 [J]. 光学 精密工程 , 2021 , 29 ( 4 ) : 854 - 863 . doi: 10.37188/OPE.20212904.0854 http://dx.doi.org/10.37188/OPE.20212904.0854
FENG Y R . Joint transmission map estimation and image dehazing using dual vision attention network [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 854 - 863 (in Chinese) . doi: 10.37188/OPE.20212904.0854 http://dx.doi.org/10.37188/OPE.20212904.0854
姜雨彤 , 杨忠琳 , 朱梦琪 , 等 . 适应性双通道先验的图像去雾方法 [J]. 光学 精密工程 , 2022 , 30 ( 10 ): 1246 - 1262 . doi: 10.37188/ope.20223010.1246 http://dx.doi.org/10.37188/ope.20223010.1246
JIANG Y T , YANG Z L , ZHU M Q , et al . Image dehazing method based on adaptive bi-channel priors [J]. Opt. Precision Eng. , 2022 , 30( 10 ) 1246 - 1262 (in Chinese) . doi: 10.37188/ope.20223010.1246 http://dx.doi.org/10.37188/ope.20223010.1246
冯燕茹 , 王一斌 . 物理成像模型的分解合成循环细化去雾网络 [J]. 光学 精密工程 , 2021 , 29 ( 11 ): 2692 - 2702 . doi: 10.37188/OPE.20212911.2692 http://dx.doi.org/10.37188/OPE.20212911.2692
FENG Y R , WANG Y B . Dehazing using a decomposition-composition and recurrent refinement network based on the physical imaging model [J]. Opt. Precision Eng. , 2021 , 29 ( 11 ): 2692 - 2702 . (in Chinese) . doi: 10.37188/OPE.20212911.2692 http://dx.doi.org/10.37188/OPE.20212911.2692
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
LI B Y , PENG X L , WANG Z Y , et al . AOD-net: All-In-One Dehazing Network [C]. 2017 IEEE International Conference on Computer Vision (ICCV) . 22 - 29 , 2017, Venice, Italy. IEEE , 2017: 4780 - 4788 . doi: 10.1109/iccv.2017.511 http://dx.doi.org/10.1109/iccv.2017.511
REN W Q , LIU S , ZHANG H , et al . Single Image Dehazing Via Multi-scale Convolutional Neural Networks [M]. Computer Vision - ECCV 2016 . Cham : Springer International Publishing , 2016 : 154 - 169 . doi: 10.1007/978-3-319-46475-6_10 http://dx.doi.org/10.1007/978-3-319-46475-6_10
CHEN Z Y , WANG Y C , YANG Y , et al . PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2025,2021 , Nashville, TN, USA. IEEE , 2021 : 7176 - 7185 . doi: 10.1109/cvpr46437.2021.00710 http://dx.doi.org/10.1109/cvpr46437.2021.00710
SCHECHNER Y Y , NARASIMHAN S G , NAYAR S K . Polarization-based vision through haze [J]. Applied Optics , 2003 , 42 ( 3 ): 511 - 525 . doi: 10.1364/ao.42.000511 http://dx.doi.org/10.1364/ao.42.000511
SCHECHNER Y Y , NARASIMHAN S G , NAYAR S K . Instant Dehazing of Images Using Polarization [C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR . 8 - 14 , 2001, Kauai, HI, USA. IEEE , 2003: I . doi: 10.1109/cvpr.2001.990493 http://dx.doi.org/10.1109/cvpr.2001.990493
LIANG J , JU H J , REN L Y , et al . Generalized polarimetric dehazing method based on low-pass filtering in frequency domain [J]. Sensors , 2020 , 20 ( 6 ): 1729 . doi: 10.3390/s20061729 http://dx.doi.org/10.3390/s20061729
SHEN L H , ZHAO Y Q , PENG Q N , et al . An iterative image dehazing method with polarization [J]. IEEE Transactions on Multimedia , 2018 , 21 ( 5 ): 1093 - 1107 . doi: 10.1109/tmm.2018.2871955 http://dx.doi.org/10.1109/tmm.2018.2871955
LIANG Z , DING X Y , MI Z T , et al . Effective polarization-based image dehazing with regularization constraint [J]. IEEE Geoscience and Remote Sensing Letters , 2022 , 19 : 1 - 5 . doi: 10.1109/lgrs.2020.3023805 http://dx.doi.org/10.1109/lgrs.2020.3023805
WANG X H , OUYANG J H , WEI Y , et al . Real-time vision through haze based on polarization imaging [J]. Applied Sciences , 2019 , 9 ( 1 ): 142 . doi: 10.3390/app9010142 http://dx.doi.org/10.3390/app9010142
HUANG F , KE C Z , WU X Y , et al . Polarization dehazing method based on spatial frequency division and fusion for a far-field and dense hazy image [J]. Applied Optics , 2021 , 60 ( 30 ): 9319 . doi: 10.1364/ao.434886 http://dx.doi.org/10.1364/ao.434886
NAMER E , SHWARTZ S , SCHECHNER Y Y . Skyless polarimetric calibration and visibility enhancement [J]. Optics Express , 2009 , 17 ( 2 ): 472 . doi: 10.1364/oe.17.000472 http://dx.doi.org/10.1364/oe.17.000472
任立勇 , 梁健 , 屈恩世 , 等 . 偏振光学成像: 器件, 技术与应用(特邀) [J]. 光子学报 , 2022 , 51 ( 8 ): 90 - 125 . doi: 10.3788/gzxb20225108.0851505 http://dx.doi.org/10.3788/gzxb20225108.0851505
REN L Y , LIANG J , QU E S , et al . Polarimetric optical imaging: devices, technologies and applications(invited) [J]. Acta Photonica Sinica , 2022 , 51 ( 8 ): 90 - 125 . (in Chinese) . doi: 10.3788/gzxb20225108.0851505 http://dx.doi.org/10.3788/gzxb20225108.0851505
LIANG J , REN L Y , QU E S , et al . Method for enhancing visibility of hazy images based on polarimetric imaging [J]. Photonics Research , 2014 , 2 ( 1 ): 38 . doi: 10.1364/prj.2.000038 http://dx.doi.org/10.1364/prj.2.000038
QU Y F , ZOU Z F . Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature [J]. Optics Express , 2017 , 25 ( 21 ): 25004 . doi: 10.1364/oe.25.025004 http://dx.doi.org/10.1364/oe.25.025004
NAYAR S K , NARASIMHAN S G . Vision in Bad Weather [C]. Proceedings of the Seventh IEEE International Conference on Computer Vision. September 20 - 27 , 1999 . Kerkyra, Greece. IEEE , 1999 : 820 - 827 .
HE K M , SUN J , TANG X O . Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013 , 35 ( 6 ): 1397 - 1409 . doi: 10.1109/tpami.2012.213 http://dx.doi.org/10.1109/tpami.2012.213
KANTI DHARA S , ROY M , SEN D , et al . Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2021 , 31 ( 5 ): 2076 - 2081 . doi: 10.1109/tcsvt.2020.3007850 http://dx.doi.org/10.1109/tcsvt.2020.3007850
ZHAO D , XU L , YAN Y , et al . Multi-scale Optimal Fusion model for single image dehazing [J]. Signal Processing: Image Communication , 2019 , 74 : 253 - 265 . doi: 10.1016/j.image.2019.02.004 http://dx.doi.org/10.1016/j.image.2019.02.004
CHO Y , JEONG J , KIM A . Model-assisted multiband fusion for single image enhancement and applications to robot vision [J]. IEEE Robotics and Automation Letters , 2018 , 3 ( 4 ): 2822 - 2829 .
ZHENG Z R , REN W Q , CAO X C , et al . Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 20 - 25 , 2021, Nashville, TN, USA. IEEE , 2021: 16180 - 16189 . doi: 10.1109/cvpr46437.2021.01592 http://dx.doi.org/10.1109/cvpr46437.2021.01592
YANG Y , WANG C Y , LIU R S , et al . Self-Augmented Unpaired Image Dehazing via Density and Depth Decomposition [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 18 - 24 , 2022, New Orleans, LA, USA. IEEE , 2022: 2027 - 2036 . doi: 10.1109/cvpr52688.2022.00208 http://dx.doi.org/10.1109/cvpr52688.2022.00208
0
浏览量
393
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构