浏览全部资源
扫码关注微信
1.长安大学 信息学院,陕西 西安 710064
2.温州大学 电气与电子工程学院,浙江 温州 325035
[ "王梦菲(1996-),女,安徽人,博士研究生,主要从事数字图像处理和计算机视觉领域的研究。E-mail: m.f.wang@foxmail.com" ]
[ "王卫星(1959-),男,黑龙江人,教授,博士生导师,1997年于瑞典皇家工学院获得博士学位,主要从事图像处理、模式识别和机器视觉等领域的研究。E-mail: wxwang@chd.edu.cn" ]
[ "李理敏(1984-),男,浙江人,博士,副教授,2006年于浙江大学获得学士学位,2012年于中科院上海微系统所获得博士学位,主要从事信号检测、图像处理等方面的研究。E-mail: lilimin@wzu.edu.cn" ]
收稿日期:2022-08-30,
修回日期:2022-10-11,
纸质出版日期:2023-07-10
移动端阅览
王梦菲,王卫星,李理敏.混沌SSA优化多重熵阈值的骨料图像自动分割[J].光学精密工程,2023,31(13):1973-1987.
WANG Mengfei,WANG Weixing,LI Limin.Automatic segmentation of aggregate images with MET optimized by chaos SSA[J].Optics and Precision Engineering,2023,31(13):1973-1987.
王梦菲,王卫星,李理敏.混沌SSA优化多重熵阈值的骨料图像自动分割[J].光学精密工程,2023,31(13):1973-1987. DOI: 10.37188/OPE.20233113.1973.
WANG Mengfei,WANG Weixing,LI Limin.Automatic segmentation of aggregate images with MET optimized by chaos SSA[J].Optics and Precision Engineering,2023,31(13):1973-1987. DOI: 10.37188/OPE.20233113.1973.
多重熵阈值(MET)随阈值个数
<math id="M1"><mi>K</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45716222&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45716218&type=
2.62466669
2.37066650
的增加其运算时间成倍增长,而相关优化策略的精度与稳定性低,使得分割的骨料图像缺失大量表面粗糙度与边缘等特征信息。为了克服这一问题,提出了一种基于混沌麻雀搜索算法(SSA)优化MET的骨料自动分割模型。为增强SSA的全局优化能力和鲁棒性,在种群位置初始化时加入Logistic混沌映射均匀麻雀分布,并提出扩张参数扩大全局搜索,控距精英变异及时跳出局部停滞,将该算法称为LSSA,可以在不降低收敛速度的情况下提升求解质量。LSSA用于MET参数的自动选取,以Renyi熵、对称交叉熵和Kapur熵作为目标函数,快速确定最佳阈值集。对不同特征的骨料图像进行了分割实验,通过对比6类组合算法与FCM算法,证明了LSSA-MET的有效性,随着
<math id="M2"><mi>K</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45716222&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45716218&type=
2.62466669
2.37066650
的增加仍然保持着较快的运行速度,即使
<math id="M3"><mi>K</mi><mo>=</mo><mn mathvariant="normal">6</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45716224&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=45716205&type=
8.21266651
2.37066650
时,平均分割一张图片也只需1.532 s。其中LSSA-Renyi熵表现最佳,峰值信噪比、结构相似性和特征相似度分别提高了29.92%,10.67%和5.16%,有效地保留了骨料表面纹理和边缘特征,同时达到了精度与速度的最佳平衡。
Multiple entropy thresholding (MET) increases exponentially with an increase in the number of thresholds
K
. Related optimization strategies exhibit low accuracy and stability with the segmented aggregate images lacking considerable feature information such as surface roughness and edges. To overcome these problems, an automatic image segmentation model based on a chaotic sparrow search algorithm (SSA) was developed to optimize MET. SSA is a newer intelligent optimization algorithm. To enhance the global optimization capability and robustness of SSA, a logistic map is added to the uniform sparrow distribution at the time of population position initialization, an expansion parameter is applied to expand the global search, and temporal local stagnation is avoided by range-control elite mutation jumps. This algorithm is called logistic SSA (LSSA) and can improve the solution quality without reducing convergence speed. LSSA is used for the automatic selection of MET parameters, with the Renyi entropy, symmetric-cross entropy, and Kapur entropy as objective functions to quickly determine the correct thresholds. In this study, image segmentation and algorithm comparison experiments are conducted on aggregate images with different characteristics. The effectiveness of LSSA-MET was demonstrated by comparing six types of combined algorithms with the fuzzy C-means (FCM) algorithm. The proposed algorithm maintains a relatively high speed with an increase in
K
, taking 1.532 s to split an image on average even when
K
=6. Among the variousm entropies, LSSA-Renyi entropy performed the best, achieving 29.92%, 10.67%, and 5.16% accuracy improvements in peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM), respectively, thereby effectively retaining the aggregate surface texture and edge characteristics while achieving the optimum balance between precision and speed.
ZHAO Y , DUAN Y , ZHU L , et al . Characterization of coarse aggregate morphology and its effect on rheological and mechanical properties of fresh concrete [J]. Construction and Building Materials , 2021 , 286 : 122940 . doi: 10.1016/j.conbuildmat.2021.122940 http://dx.doi.org/10.1016/j.conbuildmat.2021.122940
HINOJOSA S , DHAL K G , ELAZIZ M A , et al .. Entropy-based imagery segmentation for breast histology using the Stochastic Fractal Search [J]. Neurocomputing , 2018 , 321 : 201 - 215 . doi: 10.1016/j.neucom.2018.09.034 http://dx.doi.org/10.1016/j.neucom.2018.09.034
GUO Q P , WANG Y C , YANG S J , et al . A method of blasted rock image segmentation based on improved watershed algorithm [J]. Scientific Reports , 2022 , 12 ( 1 ): 7143 . doi: 10.1038/s41598-022-11351-0 http://dx.doi.org/10.1038/s41598-022-11351-0
CHENG Z , WANG J . Improved region growing method for image segmentation of three-phase materials [J]. Powder Technology , 2020 , 368 : 80 - 89 . doi: 10.1016/j.powtec.2020.04.032 http://dx.doi.org/10.1016/j.powtec.2020.04.032
WANG Y Z , TU W L , LI H . Fragmentation calculation method for blast muck piles in open-pit copper mines based on three-dimensional laser point cloud data [J]. International Journal of Applied Earth Observation and Geoinformation , 2021 , 100 : 102338 . doi: 10.1016/j.jag.2021.102338 http://dx.doi.org/10.1016/j.jag.2021.102338
ZHOU X X , GONG Q M , LIU Y Q , et al . Automatic segmentation of TBM muck images via a deep-learning approach to estimate the size and shape of rock chips [J]. Automation in Construction , 2021 , 126 : 103685 . doi: 10.1016/j.autcon.2021.103685 http://dx.doi.org/10.1016/j.autcon.2021.103685
JU Y , SUN H F , XING M X , et al . Numerical analysis of the failure process of soil-rock mixtures through computed tomography and PFC3D models [J]. International Journal of Coal Science & Technology , 2018 , 5 ( 2 ): 126 - 141 . doi: 10.1007/s40789-018-0194-5 http://dx.doi.org/10.1007/s40789-018-0194-5
LIU X , YAN J , ZHANG X , et al . Numerical upscaling of multi-mineral digital rocks: electrical conductivities of tight sandstones [J]. Journal of Petroleum Science and Engineering , 2021 , 201 : 108530 . doi: 10.1016/j.petrol.2021.108530 http://dx.doi.org/10.1016/j.petrol.2021.108530
ABROSIMOV K N , GERKE K M , SEMENKOV I N , et al . Otsu’s algorithm in the segmentation of pore space in soils based on tomographic data [J]. Eurasian Soil Science , 2021 , 54 ( 4 ): 560 - 571 . doi: 10.1134/s1064229321040037 http://dx.doi.org/10.1134/s1064229321040037
SAHOO P , WILKINS C , YEAGER J . Threshold selection using Renyi’s entropy [J]. Pattern Recognition , 1997 , 30 ( 1 ): 71 - 84 . doi: 10.1016/s0031-3203(96)00065-9 http://dx.doi.org/10.1016/s0031-3203(96)00065-9
KAPUR J N , SAHOO P K , WONG A K C . A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Processing , 1985 , 29 ( 3 ): 273 - 285 . doi: 10.1016/0734-189x(85)90125-2 http://dx.doi.org/10.1016/0734-189x(85)90125-2
HAN B , WU Y . A novel active contour model based on modified symmetric cross entropy for remote sensing river image segmentation [J]. Pattern Recognition , 2017 , 67 : 396 - 409 . doi: 10.1016/j.patcog.2017.02.022 http://dx.doi.org/10.1016/j.patcog.2017.02.022
YIN S , ZHAO X , WANG W , et al . Efficient multilevel image segmentation through fuzzy entropy maximization and graph cut optimization [J]. Pattern Recognition , 2014 , 47 ( 9 ): 2894 - 2907 . doi: 10.1016/j.patcog.2014.03.009 http://dx.doi.org/10.1016/j.patcog.2014.03.009
YIN S , QIAN Y , GONG M . Unsupervised hierarchical image segmentation through fuzzy entropy maximization [J]. Pattern Recognition , 2017 , 68 : 245 - 259 . doi: 10.1016/j.patcog.2017.03.012 http://dx.doi.org/10.1016/j.patcog.2017.03.012
NEŽERKA V , TREJBAL J . Assessment of aggregate-bitumen coverage using entropy-based image segmentation [J]. Road Materials and Pavement Design , 2020 , 21 ( 8 ): 2364 - 2375 . doi: 10.1080/14680629.2019.1605304 http://dx.doi.org/10.1080/14680629.2019.1605304
杨蕴 , 李玉 , 赵泉华 . 高分辨率全色遥感图像多级阈值分割 [J]. 光学 精密工程 , 2020 , 28 ( 10 ): 2370 - 2383 . doi: 10.37188/OPE.20202810.2370 http://dx.doi.org/10.37188/OPE.20202810.2370
YANG Y , LI Y , ZHAO Q H . Multi-level threshold segmentation of high-resolution panchromatic remote sensing imagery [J]. Opt. Precision Eng. , 2020 , 28 ( 10 ): 2370 - 2383 . (in Chinese) . doi: 10.37188/OPE.20202810.2370 http://dx.doi.org/10.37188/OPE.20202810.2370
LIU W , SHI H , HE X Y , et al . An application of optimized Otsu multi-threshold segmentation based on fireworks algorithm in cement SEM image [J]. Journal of Algorithms & Computational Technology , 2019 , 13 : 174830181879702 . doi: 10.1177/1748301818797025 http://dx.doi.org/10.1177/1748301818797025
KENNEDY J , EBERHART R . Particle swarm optimization [C]. Proceedings of ICNN'95 - International Conference on Neural Networks. November 27 - December 1 , 1995 , Perth, WA, Australia. IEEE , 2002 : 1942 - 1948 .
张坤华 , 谭志恒 , 李斌 . 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割 [J]. 光学 精密工程 , 2018 , 26 ( 4 ): 962 - 970 . doi: 10.3788/ope.20182604.0962 http://dx.doi.org/10.3788/ope.20182604.0962
ZHANG K H , TAN ZH H , LI B . Automated image segmentation based on pulse coupled neural network with particle swarm optimization and comprehensive evaluation [J]. Opt. Precision Eng. , 2018 , 26 ( 4 ): 962 - 970 . (in Chinese) . doi: 10.3788/ope.20182604.0962 http://dx.doi.org/10.3788/ope.20182604.0962
MIRJALILI S , LEWIS A . Grey wolf optimizer [J]. Advances in Engineering Software , 2014 , 69 : 46 - 61 . doi: 10.1016/j.advengsoft.2013.12.007 http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
崔靖凯 , 赛华阳 , 张恩阳 , 等 . 基于灰狼算法的模块化关节摩擦辨识和补偿 [J]. 光学 精密工程 , 2021 , 29 ( 11 ): 2683 - 2691 . doi: 10.37188/OPE.20212911.2683 http://dx.doi.org/10.37188/OPE.20212911.2683
CUI J K , SAI H Y , ZHANG E Y , et al . Identification and compensation of friction for modular joints based on grey wolf optimizer [J]. Opt. Precision Eng. , 2021 , 29 ( 11 ): 2683 - 2691 . (in Chinese) . doi: 10.37188/OPE.20212911.2683 http://dx.doi.org/10.37188/OPE.20212911.2683
MIRJALILI S , LEWIS A . The whale optimization algorithm [J]. Advances in Engineering Software , 2016 , 95 : 51 - 67 . doi: 10.1016/j.advengsoft.2016.01.008 http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
ZERVOUDAKIS K , TSAFARAKIS S . A mayfly optimization algorithm [J]. Computers & Industrial Engineering , 2020 , 145 : 106559 . doi: 10.1016/j.cie.2020.106559 http://dx.doi.org/10.1016/j.cie.2020.106559
XUE J K , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering , 2020 , 8 ( 1 ): 22 - 34 . doi: 10.1080/21642583.2019.1708830 http://dx.doi.org/10.1080/21642583.2019.1708830
孙世政 , 于竞童 , 韩宇 , 等 . 基于SSA-ELM的双层十字梁结构光纤布拉格光栅传感器三维力解耦 [J]. 光学 精密工程 , 2022 , 30 ( 3 ): 274 - 285 . doi: 10.37188/OPE.2021.0549 http://dx.doi.org/10.37188/OPE.2021.0549
SUN SH ZH , YU J T , HAN Y , et al . FBG sensor of double-layer cross beam structure based on SSA-ELM three-dimensional force decoupling [J]. Opt. Precision Eng. , 2022 , 30 ( 3 ): 274 - 285 . (in Chinese) . doi: 10.37188/OPE.2021.0549 http://dx.doi.org/10.37188/OPE.2021.0549
LI W , WANG G G , GANDOMI A H . A survey of learning-based intelligent optimization algorithms [J]. Archives of Computational Methods in Engineering , 2021 , 28 : 3781 - 3799 . doi: 10.1007/s11831-021-09562-1 http://dx.doi.org/10.1007/s11831-021-09562-1
CHEN X X , HUANG X Y , ZHU D L , et al . Research on chaotic flying sparrow search algorithm [J]. Journal of Physics: Conference Series , 2021 , 1848 ( 1 ): 012044 . doi: 10.1088/1742-6596/1848/1/012044 http://dx.doi.org/10.1088/1742-6596/1848/1/012044
LIU G Y , SHU C , LIANG Z W , et al . A modified sparrow search algorithm with application in 3d route planning for UAV [J]. Sensors , 2021 , 21 ( 4 ): 1224 . doi: 10.3390/s21041224 http://dx.doi.org/10.3390/s21041224
BAO B C , RONG K , LI H Z , et al . Memristor-coupled logistic hyperchaotic map [J]. IEEE Transactions on Circuits and Systems II: Express Briefs , 2021 , 68 ( 8 ): 2992 - 2996 . doi: 10.1109/tcsii.2021.3072393 http://dx.doi.org/10.1109/tcsii.2021.3072393
周明全 , 褚彤 , 耿国华 , 等 . 结构与纹理融合的三维文物孔洞修复方法 [J]. 光学 精密工程 , 2022 , 30 ( 8 ): 894 - 907 . doi: 10.37188/OPE.20223008.0894 http://dx.doi.org/10.37188/OPE.20223008.0894
ZHOU M Q , CHU T , GENG G H , et al . Three-dimensional cultural relic hole repair method combining structure and texture [J]. Opt. Precision Eng. , 2022 , 30 ( 8 ): 894 - 907 . (in Chinese) . doi: 10.37188/OPE.20223008.0894 http://dx.doi.org/10.37188/OPE.20223008.0894
CHAUDHARY J , PANT D R , POKHAREL S , et al . Image quality assessment by integration of low-level & high-level features: threshold similarity index [C]. 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE). 13,2022 , Anchorage, AK, USA. IEEE , 2022 : 135 - 141 . doi: 10.1109/isie51582.2022.9831651 http://dx.doi.org/10.1109/isie51582.2022.9831651
0
浏览量
180
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构