1.大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116024
2.中国船舶集团有限公司第七〇七研究所,天津 300409
[ "吕启鑫(1998-),男,山东聊城人,硕士研究生,2019年于山东理工大学获得学士学位,主要从事硬脆性材料亚表面裂纹检测的研究。E-mail:17864302873@163.com" ]
[ "白 倩(1982-),女,山东菏泽人,博士,副教授,博士生导师,2004年于西北工业大学获得学士学位,2012年于帝国理工学院获得博士学位,主要从事硬脆性材料亚表面裂纹检测以及增减材复合制造的研究。E-mail: baiqian@dlut.edu.cn" ]
扫 描 看 全 文
吕启鑫, 石芳媛, 白倩, 等. 石英玻璃亚表面微裂纹的偏振激光散射检测方法[J]. 光学精密工程, 2023,31(14):2031-2039.
LÜ Qixin, SHI Fangyuan, BAI Qian, et al. Polarized laser scattering detection method for subsurface microcracks in quartz glass[J]. Optics and Precision Engineering, 2023,31(14):2031-2039.
吕启鑫, 石芳媛, 白倩, 等. 石英玻璃亚表面微裂纹的偏振激光散射检测方法[J]. 光学精密工程, 2023,31(14):2031-2039. DOI: 10.37188/OPE.20233114.2031.
LÜ Qixin, SHI Fangyuan, BAI Qian, et al. Polarized laser scattering detection method for subsurface microcracks in quartz glass[J]. Optics and Precision Engineering, 2023,31(14):2031-2039. DOI: 10.37188/OPE.20233114.2031.
石英玻璃等光学硬脆材料在加工过程中不可避免地产生亚表面微裂纹,从而对光学元件的使役性能具有显著影响。因此,石英玻璃亚表面微裂纹的无损检测对于优化石英玻璃加工工艺进而提高加工质量具有十分重要的意义。提出了基于偏振激光散射(Polarized Laser Scattering, PLS)的石英玻璃亚表面微裂纹检测方法,搭建了PLS无损检测系统。通过压痕实验以20 mN,50 mN,100 mN压力制备亚表面微裂纹深度为5.27 μm,9.7 μm,15.42 μm的压痕试样,使用PLS检测系统对压痕试样进行无损检测,探究PLS信号与亚表面微裂纹深度的对应关系。通过不同粒径磨粒(1~20 μm)研磨制备亚表面微裂纹深度为1~10 μm的研磨试样,发现研磨PLS检测信号与亚表面裂纹深度之间呈幂函数关系。搭建的PLS检测系统可以对深度小于10 μm的石英玻璃亚表面微裂纹进行有效检测与量化。PLS检测系统检测结果可实现研磨石英玻璃微裂纹检测,进而为亚表面微裂纹控制及加工工艺优化提供指导。
Subsurface microcracking is an unavoidable consequence of the quartz glass grinding process, and it significantly affects the service performance of optical components. Therefore, nondestructive detection of subsurface microcracks in quartz glass is crucial for grinding process optimization. Accordingly, herein, a polarized laser scattering (PLS)-based method for detecting subsurface microcracks in quartz glass was developed. For this, a PLS nondestructive inspection platform was established. Indentation specimens with subsurface microcrack depths of 5.27, 9.7, and 15.42 μm were prepared via indentation experiments at pressure values of 20, 50, and 100 mN, respectively. Furthermore, ground specimens with subsurface microcrack depths ranging from 1-10 μm were prepared via grinding with different abrasive particle sizes (1-20 μm). A power function relationship between the PLS detection signal and subsurface crack depth was discovered. The developed PLS detection system effectively detected and quantified subsurface microcracks with depths less than 10 μm. Thus, the developed PLS detection system enables microcrack detection in ground quartz glass, providing valuable guidance for subsurface microcrack control and process optimization.
偏振激光散射亚表面微裂纹压痕研磨石英玻璃
polarized laser scatteringsubsurface microcrackindentationgrindingquartz glass
叶卉, 李晓峰, 崔壮壮, 等. 熔石英玻璃高效低缺陷磁辅助抛光[J]. 光学 精密工程, 2022, 30(15): 1857-1867. doi: 10.37188/OPE.20223015.1857http://dx.doi.org/10.37188/OPE.20223015.1857
YE H, LI X F, CUI ZH ZH, et al. Magnetic-assisted polishing of fused silica optics with high efficiency and low defects[J]. Opt. Precision Eng., 2022, 30(15): 1857-1867.(in Chinese). doi: 10.37188/OPE.20223015.1857http://dx.doi.org/10.37188/OPE.20223015.1857
LI P, JIN T, XIAO H, et al. Effects of wheel speed on surface/subsurface damage characteristics in grinding of glass-ceramics[J]. Ceramics International, 2020, 46(11): 17717-17728. doi: 10.1016/j.ceramint.2020.04.076http://dx.doi.org/10.1016/j.ceramint.2020.04.076
YIN J, BAI Q, LI Y, et al. Formation of subsurface cracks in silicon wafers by grinding[J]. Nanotechnology and Precision Engineering, 2018, 1(3): 172-179. doi: 10.1016/j.npe.2018.09.003http://dx.doi.org/10.1016/j.npe.2018.09.003
SOLHTALAB A, ADIBI H, ESMAEILZARE A, et al. Cup wheel grinding-induced subsurface damage in optical glass BK7: an experimental, theoretical and numerical investigation[J]. Precision Engineering, 2019, 57: 162-175. doi: 10.1016/j.precisioneng.2019.04.003http://dx.doi.org/10.1016/j.precisioneng.2019.04.003
马彬, 侯志强, 焦宏飞, 等. 脉冲激光损伤阈值测量技术及光学元件损伤性能[J]. 光学 精密工程, 2022, 30(21): 2805-2826. doi: 10.37188/ope.20223021.2805http://dx.doi.org/10.37188/ope.20223021.2805
MA B, HOU Z Q, JIAO H F, et al. Pulsed laser-induced damage threshold measurement and damage performance of optical components[J]. Opt. Precision Eng., 2022, 30(21): 2805-2826.(in Chinese). doi: 10.37188/ope.20223021.2805http://dx.doi.org/10.37188/ope.20223021.2805
周明, 黄铖, 赵培轶, 等. 光学玻璃超声振动磨削亚表面损伤的试验研究[J]. 工具技术, 2017, 51(7):15-19. doi: 10.3969/j.issn.1000-7008.2017.07.004http://dx.doi.org/10.3969/j.issn.1000-7008.2017.07.004
ZHOU M, HUANG C, ZHAO P Y, et al. Experimental investigation on subsurface damagesin ultrasonic assisted grinding of optical glass[J]. Tool Engineering, 2017, 51(7): 15-19.(in Chinese). doi: 10.3969/j.issn.1000-7008.2017.07.004http://dx.doi.org/10.3969/j.issn.1000-7008.2017.07.004
郭强生, 靳卫国, 周庆亚. 集成电路粘片机视觉检测技术研究[J]. 电子工业专用设备, 2005, 34(7): 34-40. doi: 10.3969/j.issn.1004-4507.2005.07.008http://dx.doi.org/10.3969/j.issn.1004-4507.2005.07.008
GUO Q S, JIN W G, ZHOU Q Y. Vision inspection technology of IC die bonder[J]. Equipment for Electronic Products Manufacturing, 2005, 34(7): 34-40.(in Chinese). doi: 10.3969/j.issn.1004-4507.2005.07.008http://dx.doi.org/10.3969/j.issn.1004-4507.2005.07.008
朱永伟, 李信路, 王占奎, 等. 光学硬脆材料固结磨料研磨中的亚表面损伤预测[J]. 光学 精密工程, 2017, 25(2): 367-374. doi: 10.3788/ope.20172502.0367http://dx.doi.org/10.3788/ope.20172502.0367
ZHU Y W, LI X L, WANG Z K, et al. Subsurface damage prediction for optical Hard-brittle material in fixed abrasive lapping[J]. Opt. Precision Eng., 2017, 25(2): 367-374.(in Chinese). doi: 10.3788/ope.20172502.0367http://dx.doi.org/10.3788/ope.20172502.0367
RANDI J A, LAMBROPOULOS J C, JACOBS S D. Subsurface damage in some single crystalline optical materials[J]. Applied Optics, 2005, 44(12): 2241. doi: 10.1364/ao.44.002241http://dx.doi.org/10.1364/ao.44.002241
YIN J F, BAI Q, ZHANG B. Methods for detection of subsurface damage: a review[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-14. doi: 10.1186/s10033-018-0229-2http://dx.doi.org/10.1186/s10033-018-0229-2
陈明君, 王会尧, 程健, 等. 熔石英光学元件加工亚表面缺陷检测及抑制技术研究进展[J]. 机械工程学报, 2021, 57(20): 1-19. doi: 10.3901/jme.2021.20.001http://dx.doi.org/10.3901/jme.2021.20.001
CHEN M J, WANG H Y, CHENG J, et al. Research progress on detection and suppression technology of subsurface defects in fused Shi Ying optical components processing[J]. Journal of Mechanical Engineering, 2021, 57(20): 1-19.(in Chinese). doi: 10.3901/jme.2021.20.001http://dx.doi.org/10.3901/jme.2021.20.001
CONTRERAS JAIMES ALTAIR T, ARACELI D P M, KATRIN H, et al. Deepening our understanding of bioactive glass crystallization using TEM and 3D nano-CT[J]. Journal of the European Ceramic Society, 2021, 41(9): 4958-4969. doi: 10.1016/j.jeurceramsoc.2021.02.051http://dx.doi.org/10.1016/j.jeurceramsoc.2021.02.051
WANG R K, TUCHIN V V. Optical Coherence Tomography: Light Scattering and Imaging Enhancement[M]. Handbook of Coherent-Domain Optical Methods. New York, NY: Springer New York, 2012: 665-742. doi: 10.1007/978-1-4614-5176-1_16http://dx.doi.org/10.1007/978-1-4614-5176-1_16
许逸轩, 蒋正东, 王华林, 等. 亚表面损伤深度测量的理论研究与实验分析[J]. 激光与光电子学进展, 2016, 53(11): 111401.
XU Y X, JIANG Z D, WANG H L, et al. Theoretical research and experimental analysis on the depth measurement of subsurface damage[J]. Laser & Optoelectronics Progress, 2016, 53(11):111401.(in Chinese)
王宁昌, 姜峰, 黄辉, 等. 脆性材料亚表面损伤检测研究现状和发展趋势[J]. 机械工程学报, 2017, 53(9): 170-179. doi: 10.3901/jme.2017.09.170http://dx.doi.org/10.3901/jme.2017.09.170
WANG N C, JIANG F, HUANG H, et al. Review on brittle material subsurface damage detection technology[J]. Journal of Mechanical Engineering, 2017, 53(9): 170-179.(in Chinese). doi: 10.3901/jme.2017.09.170http://dx.doi.org/10.3901/jme.2017.09.170
YIN J F, BAI Q, ZHANG B. Subsurface damage detection on ground silicon wafers using polarized laser scattering[J]. Journal of Manufacturing Science and Engineering, 2019, 141(10): 101012. doi: 10.1115/1.4044417http://dx.doi.org/10.1115/1.4044417
李庆鹏, 白倩, 张璧. 偏振激光散射检测单晶硅片磨削后的亚表面微裂纹[J]. 金刚石与磨料磨具工程, 2020, 40(4): 87-92.
LI Q P, BAI Q, ZHANG B. Detection of subsurface microcracks after grinding of single crystal silicon wafer by polarized laser scattering[J]. Diamond & Abrasives Engineering, 2020, 40(4)87-92(in Chinese)
YIN J, BAI Q, HAITJEMA H, et al. Two-dimensional detection of subsurface damage in silicon wafers with polarized laser scattering[J]. Journal of Materials Processing Technology, 2020, 284: 116746. doi: 10.1016/j.jmatprotec.2020.116746http://dx.doi.org/10.1016/j.jmatprotec.2020.116746
白倩, 马浩, 殷景飞. 基于偏振激光共聚焦的研磨石英玻璃亚表面损伤检测[J]. 光学 精密工程, 2021, 29(8): 1795-1803. doi: 10.37188/OPE.20212908.1795http://dx.doi.org/10.37188/OPE.20212908.1795
BAI Q, MA H, YIN J F. Polarized laser confocal technique for subsurface damage of lapped quartz glass[J]. Opt. Precision Eng., 2021, 29(8): 1795-1803.(in Chinese). doi: 10.37188/OPE.20212908.1795http://dx.doi.org/10.37188/OPE.20212908.1795
张云涛, 邓小伟, 吴益文, 等. 连续球压痕试验检测金属材料应变硬化指数方法的修正[J]. 机械工程材料, 2022, 46(9): 70-75. doi: 10.11973/jxgccl202209012http://dx.doi.org/10.11973/jxgccl202209012
ZHANG Y T, DENG X W, WU Y W, et al. Correction of detecting method for strain hardening exponent of metallic materials by continuous spherical indentation test[J]. Materials for Mechanical Engineering, 2022, 46(9): 70-75.(in Chinese). doi: 10.11973/jxgccl202209012http://dx.doi.org/10.11973/jxgccl202209012
陈小文, 韩宇栋, 丁小平, 等. 水泥净浆弹性模量的纳米压痕表征与多尺度计算[J]. 上海交通大学学报, 2022, 56(9): 1199-1207.
CHEN X W, HAN Y D, DING X P, et al. Multiscale calculation of elastic modulus of cement paste based on grid nanoindentation technology[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9):1199-1207.(in Chinese)
WANG J J, ZHANG C L, FENG P F, et al. A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1/2/3/4): 347-355. doi: 10.1007/s00170-015-7567-3http://dx.doi.org/10.1007/s00170-015-7567-3
CHEN J, FANG Q, LI P. et al. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 12-23. doi: 10.1016/j.ijmachtools.2015.01.003http://dx.doi.org/10.1016/j.ijmachtools.2015.01.003
王卓, 吴宇列, 戴一帆, 等. 光学材料研磨亚表面损伤的快速检测及其影响规律[J]. 光学 精密工程, 2008, 16(1): 16-21. doi: 10.3321/j.issn:1004-924X.2008.01.004http://dx.doi.org/10.3321/j.issn:1004-924X.2008.01.004
WANG Z, WU Y L, DAI Y F, et al. Rapid detection of subsurface damage of optical materials in lapping process and its influence regularity[J]. Opt. Precision Eng., 2008, 16(1): 16-21.(in Chinese). doi: 10.3321/j.issn:1004-924X.2008.01.004http://dx.doi.org/10.3321/j.issn:1004-924X.2008.01.004
LAMBROPOULOS J C, LI Y, FUNKENBUSCH P D, et al. Noncontact Estimate of Grinding-Induced Subsurface Damage[C]. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3782, Optical Manufacturing and Testing III, Denver, CO, USA. 1999, 3782: 41-50. doi: 10.1117/12.369213http://dx.doi.org/10.1117/12.369213
LI S, WANG Z, WU Y. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology, 2008, 205(1/2/3): 34-41. doi: 10.1016/j.jmatprotec.2007.11.118http://dx.doi.org/10.1016/j.jmatprotec.2007.11.118
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构