1.华侨大学 制造工程研究院,福建 厦门 361021
2.福建晶安光电有限公司,福建 泉州 362411
[ "彭福鑫(1999-),男,福建龙岩人,硕士研究生,2021年于福建农林大学获得学士学位,主要从事高效精密加工的研究。E-mail:1271040376@qq.com" ]
[ "胡中伟(1979-),男,湖北咸宁人,副教授、硕士研究生导师,2011年于湖南大学获得博士学位,主要从事高效精密加工的研究。E-mail:huzhongwei@hqu.edu.cn" ]
扫 描 看 全 文
彭福鑫, 胡中伟, 陈瑜, 等. 蓝宝石衬底双面研磨表面裂纹深度检测[J]. 光学精密工程, 2023,31(14):2060-2070.
PENG Fuxin, HU Zhongwei, CHEN Yu, et al. Surface crack depth detection of sapphire substrate two-sided lapping[J]. Optics and Precision Engineering, 2023,31(14):2060-2070.
彭福鑫, 胡中伟, 陈瑜, 等. 蓝宝石衬底双面研磨表面裂纹深度检测[J]. 光学精密工程, 2023,31(14):2060-2070. DOI: 10.37188/OPE.20233114.2060.
PENG Fuxin, HU Zhongwei, CHEN Yu, et al. Surface crack depth detection of sapphire substrate two-sided lapping[J]. Optics and Precision Engineering, 2023,31(14):2060-2070. DOI: 10.37188/OPE.20233114.2060.
双面研磨作为蓝宝石衬底制备的一道重要工序,研磨表面裂纹深度将严重影响后续抛光的材料去除量,因此对研磨衬底表面裂纹特征研究及深度测量具有重要意义。本文采用截面显微观测法、聚焦离子束侧面观测法、差动蚀刻速率法、磁流变抛光法和逐层抛光法等方法观测双面研磨蓝宝石衬底表面裂纹特征和测量裂纹深度。采用截面显微观测法和聚焦离子束侧面观测法观测研磨后蓝宝石衬底亚表面裂纹形态主要有斜线状、横线状、钩状和树杈状。采用差动蚀刻速率法测得蓝宝石衬底研磨表面裂纹密集层厚度为9~10 μm,而采用磁流变抛光法测得研磨衬底局部亚表面裂纹深度为25~30 μm,采用逐层抛光法测得研磨衬底整体亚表面裂纹深度约为30~35 μm。此外,根据不同方法所检测的裂纹特征和裂纹深度,构建了蓝宝石衬底双面研磨表面裂纹模型,为后续抛光工艺的制定与优化提供依据。
Two-sided lapping is an essential process in the fabrication of sapphire substrates, and it significantly affects the amount of material removed during subsequent polishing. Therefore, studying the characteristics and measuring the depths of surface cracks on lapped substrates are important processes. In this study, we investigate the surface crack characteristics and crack depths of two-sided lapped sapphire substrates using section apparent micrometry, focused ion beam side observations, a differential etching rate method, a magnetorheological polishing method, and a layer-by-layer polishing method. Consequently, we observe subsurface cracks on the sapphire substrate after grinding using the cross-sectional microscopic observation and focused ion beam side observation methods. These cracks mainly include oblique lines, horizontal lines, hooks, and dendritic patterns. The differential etching rate method reveals that the thickness of the crack dense layer on the grinding surface of the sapphire substrate measures 9-10 μm. Using the magnetorheological polishing method, we measure the depth of local subsurface cracks on the grinding substrate to be 25-30 μm. Furthermore, employing the layer-by-layer polishing method, we determine that the overall subsurface crack depth of the ground substrate is approximately 30-35 μm. Additionally, based on the crack characteristics and depths detected using different methods, we construct a surface crack model for the two-sided lapping of sapphire substrates. This model serves as a foundation for formulating and optimizing subsequent polishing processes.
蓝宝石衬底研磨表面裂纹裂纹检测
sapphire substratelappingsurface crackcrack detection
冯泽峰, 王沛沛, 杨旭, 等. LED光疗仪在皮肤中的穿透评估[J]. 光学 精密工程, 2022, 30(10): 1139-1150. doi: 10.37188/OPE.20223010.1139http://dx.doi.org/10.37188/OPE.20223010.1139
FENG Z F, WANG P P, YANG X, et al. Evaluation of light penetration of LED phototherapy apparatus in skin[J]. Opt. Precision Eng., 2022, 30(10): 1139-1150.(in Chinese). doi: 10.37188/OPE.20223010.1139http://dx.doi.org/10.37188/OPE.20223010.1139
刘创业. LED发光二极管的应用现状及未来发展前景展望[J]. 电子元器件与信息技术, 2022, 6(1): 116-117.
LIU C Y. Application status and future development prospect of LED[J]. Electronic Component and Information Technology, 2022, 6(1): 116-117.(in Chinese)
李海涛, 张若尘, 李玮. LED光源在汽车前照灯中的应用[J]. 光源与照明, 2020(8): 15-16.
LI H T, ZHANG R C, LI W. Application of LED light source in automobile headlamp[J]. Lamps and Lighting, 2020(8): 15-16.(in Chinese)
金鹏, 喻春雨, 周奇峰, 等. LED在道路照明中的光效优势[J]. 光学 精密工程, 2011, 19(1): 51-55. doi: 10.3788/ope.20111901.0051http://dx.doi.org/10.3788/ope.20111901.0051
JIN P, YU C Y, ZHOU Q F, et al. Superior application of LED to street lighting[J]. Opt. Precision Eng., 2011, 19(1): 51-55.(in Chinese). doi: 10.3788/ope.20111901.0051http://dx.doi.org/10.3788/ope.20111901.0051
KATYBA GM, ZAYTSEV KI, DOLGANOVA IN, et al. Sapphire waveguides and fibers for terahertz applications[J]. Progress in Crystal Growth and Characterization of Materials, 2021, 67(3): 100523. doi: 10.1016/j.pcrysgrow.2021.100523http://dx.doi.org/10.1016/j.pcrysgrow.2021.100523
HUANG H, WANG S, XU X. Effect of wire vibration on the materials loss in sapphire slicing with the fixed diamond wire[J]. Materials Science in Semiconductor Processing, 2017, 71: 93-101. doi: 10.1016/j.mssp.2017.07.010http://dx.doi.org/10.1016/j.mssp.2017.07.010
梁家玮. 蓝宝石衬底生产周期改善方法研究[D]. 赣州: 江西理工大学, 2020.
LIANG J W. Study on Improving the Production Cycle of Sapphire Substrate[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. (in Chinese)
张银霞, 杨乐乐, 郜伟, 等. 固结磨料研磨SiC晶片亚表面损伤截面显微检测技术[J]. 人工晶体学报, 2013, 42(5):906-910. doi: 10.3969/j.issn.1000-985X.2013.05.026http://dx.doi.org/10.3969/j.issn.1000-985X.2013.05.026
ZHANG Y X, YANG L L, GAO W, et al. Cross-sectional microscopy detection technology for subsurface damage of fixed abrasive lapped SiC wafers[J]. Journal of Synthetic Crystals, 2013, 42(5):906-910.(in Chinese). doi: 10.3969/j.issn.1000-985X.2013.05.026http://dx.doi.org/10.3969/j.issn.1000-985X.2013.05.026
陈森凯. 单晶SiC基片超精密加工表面及亚表面损伤研究[D]. 广州: 广东工业大学, 2014.
CHEN S K. Study on Surface and Subsurface Damage of Single Crystal SiC Substrate in Ultra-precision Machining[D]. Guangzhou: Guangdong University of Technology, 2014. (in Chinese)
孙敬龙, 秦飞, 陈沛, 等. 工艺参数对磨削硅晶圆亚表面损伤裂纹的影响[J]. 北京工业大学学报, 2017, 43(3): 448-454. doi: 10.11936/bjutxb2016030057http://dx.doi.org/10.11936/bjutxb2016030057
SUN J L, QIN F, CHEN P, et al. Effects of grinding parameters on the subsurface cracks of ground wafers[J]. Journal of Beijing University of Technology, 2017, 43(3): 448-454.(in Chinese). doi: 10.11936/bjutxb2016030057http://dx.doi.org/10.11936/bjutxb2016030057
KUMAR A, KAMINSKI S, MELKOTE SN, et al. Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers[J]. Wear, 2016, 364/365: 163-168. doi: 10.1016/j.wear.2016.07.009http://dx.doi.org/10.1016/j.wear.2016.07.009
Wu HZ, Roberts SG, Möbus G, et al. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.%SiC nanocomposites[J]. Acta Materialia, 2003, 51(1): 149-163. doi: 10.1016/s1359-6454(02)00387-7http://dx.doi.org/10.1016/s1359-6454(02)00387-7
吴沿鹏. 光学元件磨抛加工亚表面损伤分析与检测技术研究[D]. 厦门: 厦门大学, 2014.
WU Y P. Research on Subsurface Damage Analysis and Detection Technology of Optical Components Grinding and Polishing[D]. Xiamen: Xiamen University, 2014. (in Chinese)
戴子华. 固结磨料研磨K9玻璃亚表面损伤研究[D]. 南京: 南京航空航天大学, 2015.
DAI Z H. Study on Subsurface Damage of K9 Glass Ground by Fixed Abrasive[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
RANDI J A, LAMBROPOULOS J C, JACOBS S D. Subsurface damage in some single crystalline optical materials[J]. Applied Optics, 2005, 44(12): 2241-2249. doi: 10.1364/ao.44.002241http://dx.doi.org/10.1364/ao.44.002241
石峰, 戴一帆, 彭小强, 等. 磁流变抛光消除磨削亚表面损伤层新工艺[J]. 光学 精密工程, 2010, 18(1):162-168.
SHI F, DAI Y F, PENG X Q, et al. Removal of subsurface damage in grinding by magnetorheological finishing[J]. Opt. Precision Eng., 2010, 18(1):162-168.(in Chinese)
李改灵. 光学材料磨削加工亚表面损伤测量的理论与实验研究[D]. 长沙: 国防科学技术大学, 2006.
LI G L. Theoretical and Experimental Study on Subsurface Damage Measurement in Grinding of Optical Materials[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
李军, 王健杰, 郭太煜, 等. 侧面逐层抛光腐蚀法研究亚表面损伤[J]. 表面技术, 2019, 48(8): 309-315.
LI J, WANG J J, GUO T Y, et al. Subsurface damage studied by side layer-by-layer polishing and etching method[J]. Surface Technology, 2019, 48(8): 309-315.(in Chinese)
AIDA H, TAKEDA H, DOI T. Analysis of mechanically induced subsurface damage and its removal by chemical mechanical polishing for gallium nitride substrate[J]. Precision Engineering, 2021, 67: 350-358. doi: 10.1016/j.precisioneng.2020.10.007http://dx.doi.org/10.1016/j.precisioneng.2020.10.007
DWIKUSUMA F, SAULYS D, KUECH T F. Study on chemical treatment and high temperature nitridation of sapphire for III-nitride heteroepitaxial growth[J].MRS Online Proceedings Library, 2011, 743(1): L3.4.1-L3.4.6.
肖强, 王嘉琪, 靳龙平. 磁流变抛光表面粗糙度建模与仿真[J]. 工具技术, 2022, 56(4):52-59. doi: 10.3969/j.issn.1000-7008.2022.04.010http://dx.doi.org/10.3969/j.issn.1000-7008.2022.04.010
XIAO Q, WANG J Q, JIN L P. Modeling and simulation of surface roughness in magnetorheological finishing[J]. Tool Engineering, 2022, 56(4):52-59.(in Chinese). doi: 10.3969/j.issn.1000-7008.2022.04.010http://dx.doi.org/10.3969/j.issn.1000-7008.2022.04.010
CAI C, LIU Y, HE X, et al. Effect of chemical activity of bulk and pad materials on the redeposition layer during polishing of glass[J]. Thin Solid Films, 2021, 735: 138876. doi: 10.1016/j.tsf.2021.138876http://dx.doi.org/10.1016/j.tsf.2021.138876
LIN J, JIANG F, WEN Q, et al. Deformation anisotropy of nano-scratching on C-plane of sapphire: a molecular dynamics study and experiment[J]. Applied Surface Science, 2021, 546: 149091. doi: 10.1016/j.apsusc.2021.149091http://dx.doi.org/10.1016/j.apsusc.2021.149091
TRABADELO V, PATHAK S, SAEIDI F, et al. Nanoindentation deformation and cracking in sapphire[J]. Ceramics International, 2019, 45(8): 9835-9845. doi: 10.1016/j.ceramint.2019.02.022http://dx.doi.org/10.1016/j.ceramint.2019.02.022
ARREGUI-MENA JD, SEIBERT RL, GERCZAK TJ. Characterization of PyC/SiC interfaces with FIB-SEM tomography[J]. Journal of Nuclear Materials, 2021, 545: 152736. doi: 10.1016/j.jnucmat.2020.152736http://dx.doi.org/10.1016/j.jnucmat.2020.152736
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构