1.西北工业大学 宁波研究院,浙江 宁波 315103
2.西北工业大学 机电学院,陕西 西安 710072
3.空天微纳系统教育部重点实验室,陕西省微纳机电系统重点实验室,陕西 西安 710072
[ "张聪立(1988-),男,浙江宁波人,博士研究生,2011年于北京科技大学获得学士学位,主要从事光学成像精密系统方面的研究。E-mail: zhangcongl@mail.nwpu.edu.cn" ]
[ "虞益挺(1980-),男,浙江宁波人,博士,教授,博士生导师,2003年、2006年、2010年于西北工业大学分别获得学士、硕士和博士学位,主要从事微纳光学成像与传感技术的研究。E-mail:yyt@nwpu.edu.cn" ]
扫 描 看 全 文
张聪立, 周俊焯, 纵园, 等. 基于偏振信息的海面太阳耀光抑制[J]. 光学精密工程, 2023,31(15):2181-2192.
ZHANG Congli, ZHOU Junzhuo, ZONG Yuan, et al. Sun glint suppression from sea surface based on polarization information[J]. Optics and Precision Engineering, 2023,31(15):2181-2192.
张聪立, 周俊焯, 纵园, 等. 基于偏振信息的海面太阳耀光抑制[J]. 光学精密工程, 2023,31(15):2181-2192. DOI: 10.37188/OPE.20233115.2181.
ZHANG Congli, ZHOU Junzhuo, ZONG Yuan, et al. Sun glint suppression from sea surface based on polarization information[J]. Optics and Precision Engineering, 2023,31(15):2181-2192. DOI: 10.37188/OPE.20233115.2181.
太阳耀光干扰严重阻碍遥感领域中目标信息的有效提取,为实现复杂海面背景中水下军事目标的全天候全天时监测,针对无人机载平台,提出基于偏振信息的海面太阳耀光抑制方法。利用太阳耀光和目标信息光的偏振特性差异构建光成分解耦分离模型、选择非饱和偏振图像组解算场景全域偏振信息,使用穆勒矩阵形式的太阳耀光归一化反射率求解太阳耀光的偏振态空间分布;提出光源-水下目标-探测器偏振态传输模型以求解目标信息光偏振度,并根据被动水下成像物理模型,利用水体衰减系数对目标信息光偏振度进行修正;最终实现波动水面的反射太阳耀光抑制。实验结果表明:对于户外真实波动水面场景,耀光抑制图像的区域对比度和图像信杂比相较于90°偏振图像分别提升25.3%和78.4%。本文方法可有效增强太阳耀光干扰下的水下目标表征,从而助力我国挺进深蓝、向海而兴。
Sun glint interference seriously hinders the effective acquisition of object information in the remote sensing field. In this paper, a sun glint suppression method based on polarization information for UAV-borne platform was presented to realize all-weather and all-time detection of underwater military targets in a complex marine background. A light component decoupling model was constructed using the polarization characteristic difference between sun glint and object information light and an unsaturated image set was selected to solve the global polarization information of the scene. Then, the spatial distribution of sun glint polarization state was deduced based on the normalized reflectance of sun glint in a Muller matrix. Further, a source-submarine-detector polarization state transmission model was proposed to estimate the polarization degree of object information light; then, the water attenuation coefficient was used to correct the model according to the physics-based model for passive underwater imaging. Finally, a sun glint suppression method that is applicable to a wavy water surface was realized. The outdoor experimental results show that the region contrast and signal-to-noise ratio of sun glint suppression image are improved by 25.3% and 78.4%, respectively, compared with those of the 90° polarization image. Our method can effectively enhance the characteristics of submarine targets under the interference of sun glint, thus helping our country to better explore the sea.
偏振成像海洋强国太阳耀光杂波抑制航空遥感
polarization imagingstrong maritime countrysun glintclutter suppressionaviation remote sensing
PUHONG, DUAN. Texture-aware total variation-based removal of Sun glint in hyperspectral images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 359-372. doi: 10.1016/j.isprsjprs.2020.06.009http://dx.doi.org/10.1016/j.isprsjprs.2020.06.009
FELL F. A contrast minimization approach to remove Sun glint in landsat 8 imagery[J]. Remote Sensing, 2022, 14(18): 4643. doi: 10.3390/rs14184643http://dx.doi.org/10.3390/rs14184643
LIANG J A, WANG X, FANG Y J, et al. Water surface-clutter suppression method based on infrared polarization information[J]. Applied Optics, 2018, 57(16): 4649-4658. doi: 10.1364/ao.57.004649http://dx.doi.org/10.1364/ao.57.004649
李岩松, 赵慧洁, 李娜, 等. 基于中红外偏振的海面太阳耀光背景下的目标探测[J]. 中国激光, 2022, 49(19): 1910004.
LI Y S, ZHAO H J, LI N, et al. Target detection based on mid-infrared polarization under the background of sea surface solar glare[J]. China Industrial Economics, 2022, 49(19): 1910004.(in Chinese)
HOCHBERG E J, ANDREFOUET S, TYLER M R. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1724-1729. doi: 10.1109/tgrs.2003.815408http://dx.doi.org/10.1109/tgrs.2003.815408
周杨. 海面溢油耀光偏振遥感实验研究[D]. 南京: 南京大学, 2018: 20-36.
ZHOU Y. Experimental study on Bright Polarized Remote Sensing of Oil Spill on The Sea Surface[D]. Nanjing: Nanjing University, 2018: 20-36.(in Chinese)
AVRAHAMY R, MILGROM B, ZOHAR M, et al. Improving object imaging with sea glinted background using polarization method: analysis and operator survey[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8764-8774. doi: 10.1109/tgrs.2019.2922827http://dx.doi.org/10.1109/tgrs.2019.2922827
WU X Y, LU Y C, JIAO J N, et al. Using Sea wave simulations to interpret the sunglint reflection variation with different spatial resolutions[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-4. doi: 10.1109/lgrs.2020.3033700http://dx.doi.org/10.1109/lgrs.2020.3033700
韩平丽. 水下目标偏振成像探测技术研究[D]. 西安: 西安电子科技大学, 2018: 17-33. doi: 10.7498/aps.67.20172009http://dx.doi.org/10.7498/aps.67.20172009
HAN P L. Research on Polarization Imaging Detection Technology of Underwater Target[D]. Xi'an: Xidian University, 2018: 17-33.(in Chinese). doi: 10.7498/aps.67.20172009http://dx.doi.org/10.7498/aps.67.20172009
陈卫, 孙晓兵, 乔延利, 等. 海面耀光背景下的目标偏振检测[J]. 红外与激光工程, 2017, 46(B12): 63-68.
CHEN W, SUN X B, QIAO Y L, et al. Polarization detection of marine targets covered in glint[J]. Infrared and Laser Engineering, 2017, 46(B12): 63-68.(in Chinese)
ZHAO H J, JI Z, ZHANG Y, et al. Mid-infrared imaging system based on polarizers for detecting marine targets covered in Sun glint[J]. Optics Express, 2016, 24(15): 16396-16409. doi: 10.1364/oe.24.016396http://dx.doi.org/10.1364/oe.24.016396
LIANG J A, WANG X, HE S, et al. Sea surface clutter suppression method based on time-domain polarization characteristics of Sun glint[J]. Optics Express, 2019, 27(3): 2142-2158. doi: 10.1364/oe.27.002142http://dx.doi.org/10.1364/oe.27.002142
张景华, 张焱, 石志广, 等. 基于偏振特征的水面饱和耀光抑制技术[J]. 光学学报, 2022, 42(24): 2401009.
ZHANG J H, ZHANG Y, SHI ZH G, et al. Suppression technology for saturated water surface glint based on polarization characteristics[J]. Acta Optica Sinica, 2022, 42(24): 2401009.(in Chinese)
陈卫, 乔延利, 孙晓兵, 等. 基于偏振辐射图融合的水面太阳耀光抑制方法[J]. 光学学报, 2019, 39(5): 0529001.
CHEN W, QIAO Y L, SUN X B, et al. Suppression method of water surface solar glare based on polarization radiation pattern fusion[J]. Acta Optica Sinica, 2019, 39(5): 0529001.(in Chinese)
杨梅梅, 赵佩瑶, 冯斌, 等. 偏振滤光结合多项式拟合的水面太阳耀光抑制方法[J]. 激光与光电子学进展, 2021, 58(24): 2401002.
YANG M M, ZHAO P Y, FENG B, et al. Polarization filtering combined with polynomial fitting to suppress solar glow on water surface[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2401002.(in Chinese)
SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. doi: 10.1109/joe.2005.850871http://dx.doi.org/10.1109/joe.2005.850871
HAN P, LIU F, WEI Y, et al. Optical correlation assists to enhance underwater polarization imaging performance[J]. Optics and Lasers in Engineering, 2020, 134: 106256. doi: 10.1016/j.optlaseng.2020.106256http://dx.doi.org/10.1016/j.optlaseng.2020.106256
GUO Y H, SENTHILNATH J, WU W X, et al. Radiometric calibration for multispectral camera of different imaging conditions mounted on a UAV platform[J]. Sustainability, 2019, 11(4): 978. doi: 10.3390/su11040978http://dx.doi.org/10.3390/su11040978
HUANG S, TANG L N, HUPY J P, et al. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing[J].Journal of Forestry Research, 2021, 32(1): 1-6. doi: 10.1007/s11676-020-01155-1http://dx.doi.org/10.1007/s11676-020-01155-1
申茜, 李俊生, 张兵, 等. 水面原位多角度偏振反射率光谱特性分析与离水辐射提取[J]. 光谱学与光谱分析, 2016, 36(10):3269-3273.
SHEN Q, LI J SH, ZHANG B, et al. Analyzing spectral characteristics of water involving In-situ multiangle polarized reflectance and extraction of water-leaving radiance[J]. Spectroscopy and Spectral Analysis, 2016, 36(10):3269-3273.(in Chinese)
COX C, MUNK W. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850. doi: 10.1364/josa.44.000838http://dx.doi.org/10.1364/josa.44.000838
ZHANG H, WANG M. Evaluation of Sun glint models using MODIS measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(3): 492-506. doi: 10.1016/j.jqsrt.2009.10.001http://dx.doi.org/10.1016/j.jqsrt.2009.10.001
LU Y C, ZHOU Y, LIU Y X, et al. Using remote sensing to detect the polarized sunglint reflected from oil slicks beyond the critical angle[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6342-6354. doi: 10.1002/2017jc012793http://dx.doi.org/10.1002/2017jc012793
ROWE M P, Jr PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610. doi: 10.1364/ol.20.000608http://dx.doi.org/10.1364/ol.20.000608
廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003: 59-61.
LIAO Y B. Polarization Optics[M]. Beijing: Science Press, 2003: 59-61.(in Chinese)
于洪志, 孙春生, 胡艺铭. 一种全局参数估计的水下主动偏振去雾算法[J]. 应用光学, 2020, 41(1):107-113, 193. doi: 10.5768/jao202041.0102007http://dx.doi.org/10.5768/jao202041.0102007
YU H ZH, SUN CH SH, HU Y M. Underwater active polarization defogging algorithm for global parameter estimation[J]. Journal of Applied Optics, 2020, 41(1):107-113, 193.(in Chinese). doi: 10.5768/jao202041.0102007http://dx.doi.org/10.5768/jao202041.0102007
DONALD B, MATHEW R. Refractive index-a key to understanding color differences[J]. Journal of Vinyl and Additive Technology, 1988, 10(4): 205-209. doi: 10.1002/vnl.730100409http://dx.doi.org/10.1002/vnl.730100409
刘笑菡, 冯龙庆, 张运林, 等. 浅水湖泊水动力过程对藻型湖区水体生物光学特性的影响[J]. 环境科学, 2012, 33(2):412-420.
LIU X H, FENG L Q, ZHANG Y L, et al. Effects of hydrodynamic process on bio-optical properties in algal-dominated lake region of shallow lake[J]. Chinese Journal of Environmental Science, 2012, 33(2):412-420.(in Chinese)
陈兴峰, 顾行发, 程天海, 等. 真实海洋表面的太阳耀光偏振辐射特性仿真与分析[J]. 光谱学与光谱分析, 2011, 31(6): 1648-1653. doi: 10.3964/j.issn.1000-0593(2011)06-1648-06http://dx.doi.org/10.3964/j.issn.1000-0593(2011)06-1648-06
CHEN X F, GU X F, CHENG T H, et al. Simulation and analysis of polarization characteristics for real sea surface sunglint[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1648-1653.(in Chinese). doi: 10.3964/j.issn.1000-0593(2011)06-1648-06http://dx.doi.org/10.3964/j.issn.1000-0593(2011)06-1648-06
张肃, 战俊彤, 付强, 等. 复杂海洋环境下天空光偏振特性模拟研究[J]. 光学学报, 2020, 40(22): 2201001.
ZHANG S, ZHAN J T, FU Q, et al. Simulation study on polarization characteristics of sky light in complex marine environment[J]. Acta Optica Sinica, 2020, 40(22): 2201001.(in Chinese)
WANG C H, FENG Y Y, YANG Y H, et al. Chebyshev collocation spectral method for vector radiative transfer equation and its applications in two-layered media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 243: 106822. doi: 10.1016/j.jqsrt.2019.106822http://dx.doi.org/10.1016/j.jqsrt.2019.106822
FOSTER R, GILERSON A. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field[J]. Applied Optics, 2016, 55(33): 9476-9494. doi: 10.1364/ao.55.009476http://dx.doi.org/10.1364/ao.55.009476
褚金奎, 田连标, 成昊远, 等. 天空光主导的波浪水面下偏振分布模型仿真[J]. 光学学报, 2020, 40(20): 2001002. doi: 10.3788/aos202040.2001002http://dx.doi.org/10.3788/aos202040.2001002
CHU J K, TIAN L B, CHENG H Y, et al. Simulation of polarization distribution model under wavy water surfaces dominated by skylight[J]. Acta Optica Sinica, 2020, 40(20): 2001002.(in Chinese). doi: 10.3788/aos202040.2001002http://dx.doi.org/10.3788/aos202040.2001002
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构