1.深圳大学 机电与控制工程学院 深圳市高性能特种制造重点实验室, 广东 深圳 518060
2.香港理工大学 工业及系统工程系 超精密加工技术国家重点实验室, 中国香港 999077
[ "王 鑫(1998-),男,湖南益阳人,硕士研究生,2020年于南华大学获得学士学位,主要研究方向为玻璃热压印装备加热系统的研发。E-mail:2070292069@email.szu.edu.cn" ]
[ "杨 高(1994-),男,湖北黄冈人,助理教授,2016年于深圳大学获得学士学位,2020年于香港理工大学获得博士学位,主要研究方向为先进光学制造技术和智能装备。E-mail:gao.yang@szu.edu.cn" ]
扫 描 看 全 文
王鑫, 龚峰, 张志辉, 等. 用于玻璃热压印的高温快速均匀加热模块的制造及优化[J]. 光学精密工程, 2023,31(15):2203-2217.
WANG Xin, GONG Feng, CHEUNG Chifai, et al. Fabrication and optimization of high-temperature uniform rapid heating module for glass hot embossing[J]. Optics and Precision Engineering, 2023,31(15):2203-2217.
王鑫, 龚峰, 张志辉, 等. 用于玻璃热压印的高温快速均匀加热模块的制造及优化[J]. 光学精密工程, 2023,31(15):2203-2217. DOI: 10.37188/OPE.20233115.2203.
WANG Xin, GONG Feng, CHEUNG Chifai, et al. Fabrication and optimization of high-temperature uniform rapid heating module for glass hot embossing[J]. Optics and Precision Engineering, 2023,31(15):2203-2217. DOI: 10.37188/OPE.20233115.2203.
热压印技术是实现高性能玻璃微光学元件低成本绿色制造的有效途径,但是,由于加热冷却周期较长,温度均匀性不高,其制造效率和成型质量被限制。因此,有必要开发高温快速均匀加热模块,实现高效高质热压印成型。首先,基于氮化硅陶瓷加热片设计制造加热模块,搭建加热测试平台,实现加热模块表面温度分布的实时监测;然后,开展恒电压加热重复性测试,评估实验结果的可靠性;接着,建立和修正加热模块恒电压加热有限元仿真模型,并结合有限元仿真模型和正交试验法对加热模块结构进行优化,以提高加热速率和温度均匀性。实验结果表明:优化后的加热模块不仅加热速率快,而且温度分布均匀。进行180 s恒电压加热测试时,加热模块的升温速率可达363 ℃/min,表面温差为10.7 ℃。对加热模块进行700 ℃控温加热时,实测温度曲线与设定温度曲线基本一致,温度波动在0.3 ℃以内,尤其中心20 mm×30 mm区域的温差在2 ℃左右。最后,将高温快速均匀加热模块集成于热压印装置,实现了N-BK7玻璃微结构阵列的高效率高质量热压印成型。
Hot embossing is a promising technology for fabricating high-performance glass micro-optical components at low-cost and in a green manner. However, the efficiency and accuracy of hot embossing are limited by the long heating-cooling cycle time and the low uniformity of temperature distribution, respectively. Therefore, it is necessary to develop a high-temperature rapid uniform heating module to improve the efficiency and accuracy of hot embossing. First, a heating module based on a silicon nitride ceramic heater was designed and fabricated, and a heating test platform was constructed, enabling the real-time monitoring of the temperature distribution of the heating module. Constant-voltage heating tests were repeatedly conducted to demonstrate the reproducibility of the experiments. Subsequently, a numerical simulation model was established for the heating module, and the accuracy of the finite element model was evaluated by comparing the simulated and experimental results under the same process conditions. Numerical simulation and orthogonal tests were performed to optimize the heating module and hence obtain decent uniformity of the temperature distribution and a rapid heating rate. The experimental results indicate that the optimized heating module not only had a rapid heating rate but also a uniform temperature distribution. In the constant-voltage heating tests, the heating rate of the optimized heating module is as high as 363 ℃/min, and the maximum temperature difference is 10.7 ℃, which validates the feasibility of the optimization method. In the controlled heating test, the measured temperature curve is essentially consistent with the set temperature curve, and the temperature fluctuation is within 0.3 ℃. In particular, the temperature difference in the central area of 20 mm×30 mm is approximately 2 ℃. Finally, the optimized rapid heating module and a precision temperature control system were integrated into a high-temperature hot embossing machine, which achieved efficient hot embossing of high-quality N-BK7 glass microstructure arrays.
热压印加热温度均匀性有限元仿真正交试验
hot embossingheatinguniformity of temperaturefinite element simulationorthogonal experiment
舒成松, 董浩, 尹韶辉, 等. 高精度微结构玻璃光学元件阵列模压技术研究进展[J]. 光学 精密工程, 2020, 28(9): 1967-1985. doi: 10.37188/OPE.20202809.1967http://dx.doi.org/10.37188/OPE.20202809.1967
SHU CH S, DONG H, YIN S H, et al. Research progress of high precision micro structure glass optical element array molding technology[J]. Opt. Precision Eng., 2020, 28(9): 1967-1985.(in Chinese). doi: 10.37188/OPE.20202809.1967http://dx.doi.org/10.37188/OPE.20202809.1967
DESHMUKH S S, GOSWAMI A. Current innovations in roller embossing-a comprehensive review[J]. Microsystem Technologies, 2022, 28(5): 1077-1114. doi: 10.1007/s00542-022-05265-0http://dx.doi.org/10.1007/s00542-022-05265-0
高晓蕾, 陈艺勤, 郑梦洁, 等. 大面积纳米压印技术及其器件应用[J]. 光学 精密工程, 2022, 30(5): 555-573. doi: 10.37188/ope.20223005.0555http://dx.doi.org/10.37188/ope.20223005.0555
GAO X L, CHEN Y Q, ZHENG M J, et al. Large-area nanoimprint lithography: processes and device applications[J]. Opt. Precision Eng., 2022, 30(5): 555-573. (in Chinese). doi: 10.37188/ope.20223005.0555http://dx.doi.org/10.37188/ope.20223005.0555
龚峰, 李康森, 闫超. 玻璃精密模压成形的研究进展[J]. 光学 精密工程, 2018, 26(6):1380-1391. doi: 10.3788/ope.20182606.1380http://dx.doi.org/10.3788/ope.20182606.1380
GONG F, LI K S, YAN CH. Progress on precision glass molding[J]. Optics and Precision Engineering, 2018, 26(6):1380-1391.(in Chinese). doi: 10.3788/ope.20182606.1380http://dx.doi.org/10.3788/ope.20182606.1380
YAN J W,ZHOU T F. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis[J]. Precision Engineering, 2009, 33(2): 150-159. doi: 10.1016/j.precisioneng.2008.05.005http://dx.doi.org/10.1016/j.precisioneng.2008.05.005
LIU D L, XIN Y, CAO W H, et al. Effects of process parameters on warpage of rapid heat cycle moulding plastic part[J].Journal of Central South University, 2014, 21(8): 3024-3036. doi: 10.1007/s11771-014-2272-1http://dx.doi.org/10.1007/s11771-014-2272-1
CREMA L, SORGATO M, LUCCHETTA G. Thermal optimization of deterministic porous mold inserts for rapid heat cycle molding[J]. International Journal of Heat and Mass Transfer, 2017, 109: 462-469. doi: 10.1016/j.ijheatmasstransfer.2017.02.023http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.02.023
LI X P, ZHAO G Q, GUAN Y J, et al. Optimal design of heating channels for rapid heating cycle injection mold based on response surface and genetic algorithm[J]. Materials & Design, 2009, 30(10): 4317-4323. doi: 10.1016/j.matdes.2009.04.016http://dx.doi.org/10.1016/j.matdes.2009.04.016
DESHMUKH S S, GOSWAMI A. Recent developments in hot embossing-a review[J]. Materials and Manufacturing Processes, 2021, 36(5): 501-543. doi: 10.1080/10426914.2020.1832691http://dx.doi.org/10.1080/10426914.2020.1832691
CHENG C, KE K C, YANG S Y. Application of graphene-polymer composite heaters in gas-assisted micro hot embossing[J]. RSC Advances, 2017, 7(11): 6336-6344. doi: 10.1039/c6ra27618khttp://dx.doi.org/10.1039/c6ra27618k
NIAN S C, TSAI T H, HUANG M S. Novel inductive hot embossing for increasing micromolding efficiency[J]. International Communications in Heat and Mass Transfer, 2016, 70: 38-46. doi: 10.1016/j.icheatmasstransfer.2015.11.005http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.11.005
KURITA T, OGURA I, ASHIDA K. Proposal of laser assisted hot embossing technology for glass[J]. Journal of Materials Processing Technology, 2018, 254: 248-253. doi: 10.1016/j.jmatprotec.2017.11.040http://dx.doi.org/10.1016/j.jmatprotec.2017.11.040
王小权. 光学玻璃精密模压设备总体设计及加热系统研制[D]. 深圳: 深圳大学, 2017.
WANG X Q. Overall Design of Optical Glass Precision Molding Equipment and Development of Heating System[D]. Shenzhen: Shenzhen University, 2017. (in Chinese)
陈冲. 高熔点玻璃模压机结构及控制系统设计研究[D]. 长沙: 湖南大学, 2017.
CHEN CH. Research on the Structure and Control System Design of High Melting Point Glass Molding Machine[D]. Changsha: Hunan University, 2017. (in Chinese)
CHEN P L, HONG R H, YANG S Y. Hot-rolled embossing of microlens arrays with antireflective nanostructures on optical glass[J]. Journal of Micromechanics and Microengineering, 2015, 25(9): 095001. doi: 10.1088/0960-1317/25/9/095001http://dx.doi.org/10.1088/0960-1317/25/9/095001
史春彦, 刘强. 一种有石墨夹层的传热辊筒及其传热方法:中国, 201510044677[P]. 2015-06-10.
SHI CH Y, LIU Q. A heat transfer roller with graphite interlayer and its heat transfer method: China, 201510044677 [P]. 2015-06-10. (in Chinese)
LI J Q, LI T D, PENG X, et al. Optimal design of heating system for electrical rapid heat cycle mold based on multi-objective optimization, multiple-attribute decision-making, and conformal design theory[J]. Advances in Mechanical Engineering, 2018, 10(8): 168781401878950. doi: 10.1177/1687814018789504http://dx.doi.org/10.1177/1687814018789504
刘锋, 李吉泉, 彭翔, 等. 限定加热管布局的快速热循环注塑成形模具电加热系统优化[J]. 中国机械工程, 2020, 31(22): 2699-2707. doi: 10.3969/j.issn.1004-132X.2020.22.006http://dx.doi.org/10.3969/j.issn.1004-132X.2020.22.006
LIU F, LI J Q, PENG X, et al. Optimization of electric heating system for rapid thermal cycle injection molding mold with limited heating pipe layout[J]. China Mechanical Engineering, 2020, 31(22): 2699-2707.(in Chinese). doi: 10.3969/j.issn.1004-132X.2020.22.006http://dx.doi.org/10.3969/j.issn.1004-132X.2020.22.006
LI J Z, GONG F, WANG X, et al. Study on filling capacity of optical glass in a novel rapid hot embossing process[J]. Applied Sciences, 2022, 12(7): 3404. doi: 10.3390/app12073404http://dx.doi.org/10.3390/app12073404
陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. doi: 10.2991/icsshe-19.2019.79http://dx.doi.org/10.2991/icsshe-19.2019.79
TAO W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019.(in Chinese). doi: 10.2991/icsshe-19.2019.79http://dx.doi.org/10.2991/icsshe-19.2019.79
杜广. 激光烧结制备电子封装用钨铜复合材料[D]. 南昌: 华东交通大学, 2013.
DU G. Preparation of Tungsten-copper Composites for Electronic Packaging by Laser Sintering[D]. Nanchang: East China Jiaotong University, 2013. (in Chinese)
宋盼盼, 赵玉刚, 蒲业壮, 等. 激光辅助切削氮化硅陶瓷的温度场仿真及参数研究[J]. 应用激光, 2019, 39(4): 634-640.
SONG P P, ZHAO Y G, PU Y ZH, et al. Temperature field simulation and parameter study of laser-assisted cutting of silicon nitride ceramics[J]. Applied Laser, 2019, 39(4): 634-640.(in Chinese)
田晓根, 张亚莉, 李少英, 等. 传热过程中固体形状对温度分布的影响分析[J]. 稀有金属, 2017, 41(4): 377-383. doi: 10.13373/j.cnki.cjrm.XY15121301http://dx.doi.org/10.13373/j.cnki.cjrm.XY15121301
TIAN X G, ZHANG Y L, LI SH Y, et al. Temperature distribution with different solid shapes in heat transfer process[J]. Chinese Journal of Rare Metals, 2017, 41(4): 377-383.(in Chinese). doi: 10.13373/j.cnki.cjrm.XY15121301http://dx.doi.org/10.13373/j.cnki.cjrm.XY15121301
李泰栋, 沈子宜, 贾亚东, 等. 电热变模温注塑模具加热系统优化研究[J]. 塑料工业, 2019, 47(1)51-55, 78. doi: 10.3969/j.issn.1005-5770.2019.01.011http://dx.doi.org/10.3969/j.issn.1005-5770.2019.01.011
LI T D, SHEN Z Y, JIA Y D, et al. Study on the optimization of heating system of electrothermal variable mold temperature injection mold[J]. China Plastics Industry, 2019, 47(1)51-55, 78.(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.01.011http://dx.doi.org/10.3969/j.issn.1005-5770.2019.01.011
毕冬梅, 陈焕新, 王丽萍, 等. 低温下接触界面热阻的实验与模拟研究[J]. 低温工程, 2011(5): 46-49, 55. doi: 10.3969/j.issn.1000-6516.2011.05.011http://dx.doi.org/10.3969/j.issn.1000-6516.2011.05.011
BI D M, CHEN H X, WANG L P, et al. Simulation study on thermal boundary resistance between different metals at low temperature[J]. Cryogenics, 2011(5): 46-49, 55.(in Chinese). doi: 10.3969/j.issn.1000-6516.2011.05.011http://dx.doi.org/10.3969/j.issn.1000-6516.2011.05.011
李志伟, 徐烈, 孙恒, 等. 低温真空下固体界面间接触热导实验分析[J]. 低温与超导, 2004, 32(1):55-58. doi: 10.3969/j.issn.1001-7100.2004.01.016http://dx.doi.org/10.3969/j.issn.1001-7100.2004.01.016
LI ZH W, XU L, SUN H, et al. Experimental research on thermal contact resistance under vacuum and low temperature[J]. Cryogenics and Superconductivity, 2004, 32(1):55-58.(in Chinese). doi: 10.3969/j.issn.1001-7100.2004.01.016http://dx.doi.org/10.3969/j.issn.1001-7100.2004.01.016
徐烈, 杨军, 徐佳梅, 等. 低温下固体表面接触热阻的研究[J]. 低温与超导, 1996, 24(1): 53-58.
XU L, YANG J, XU J M, et al. The research of contact thermal resistance of solid surface at low temperature[J]. Cryogenics and Super Conductivity, 1996, 24(1): 53-58.(in Chinese)
钱小辉, 马骁妍, 秦中华, 等. 基于正交试验的玻璃壳热应力影响因素分析[J]. 机械工程学报, 2019, 55(12):91-98. doi: 10.3901/jme.2019.12.091http://dx.doi.org/10.3901/jme.2019.12.091
QIAN X H, MA X Y, QIN Z H, et al. Analysis of glass shell’s thermal stress based on orthogonal experiment[J]. Journal of Mechanical Engineering, 2019, 55(12):91-98.(in Chinese). doi: 10.3901/jme.2019.12.091http://dx.doi.org/10.3901/jme.2019.12.091
舒阳, 周志雄, 黄向明, 等. 精密热压成型机关键技术研究与实现[J]. 机械工程学报, 2018, 54(17): 200-207. doi: 10.1542/9781581106640-part01-ch01http://dx.doi.org/10.1542/9781581106640-part01-ch01
SHU Y, ZHOU ZH X, HUANG X M, et al. Research and implementation on critical technology of precision compression molding tool[J]. Journal of Mechanical Engineering, 2018, 54(17): 200-207.(in Chinese). doi: 10.1542/9781581106640-part01-ch01http://dx.doi.org/10.1542/9781581106640-part01-ch01
0
浏览量
43
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构