1.长春理工大学 国家纳米操纵与制造国际联合研究中心,吉林 长春 130022
2.佛山科学技术学院 机电工程与自动化学院,广东 佛山 528225
[ "于苗苗(1994-),女,内蒙古突泉县人,博士研究生,2016年于大连民族大学获得学士学位,主要从事激光烧蚀金属微纳结构及性能的研究。E-mail: yumiaomiao421@163.com" ]
[ "翁占坤(1974-),男,内蒙古宁城县人,博士,教授,博士生导师,1998年于长春光学精密机械学院获得学士学位,2004年于长春理工大学获得硕士学位,2008年于大连理工大学获得博士学位,研究方向为激光干涉光场调控微纳增减材制造、微纳复合功能表面制造及特性研究。E-mail: wengzk@fosu.edu.cn" ]
扫 描 看 全 文
于苗苗, 翁占坤, 王冠群, 等. 液相下激光烧蚀快速制备图案化铜微纳结构[J]. 光学精密工程, 2023,31(15):2248-2259.
YU Miaomiao, WENG Zhankun, WANG Guanqun, et al. Rapid fabrication of patterned Cu micro-nano structure by laser ablation in liquid[J]. Optics and Precision Engineering, 2023,31(15):2248-2259.
于苗苗, 翁占坤, 王冠群, 等. 液相下激光烧蚀快速制备图案化铜微纳结构[J]. 光学精密工程, 2023,31(15):2248-2259. DOI: 10.37188/OPE.20233115.2248.
YU Miaomiao, WENG Zhankun, WANG Guanqun, et al. Rapid fabrication of patterned Cu micro-nano structure by laser ablation in liquid[J]. Optics and Precision Engineering, 2023,31(15):2248-2259. DOI: 10.37188/OPE.20233115.2248.
为了实现大面积图案化铜微纳结构的制备,基于液相下激光烧蚀技术,以硅片为衬底,将其浸没在含有Cu,2,O微米粒子的乙醇溶液中,采用纳秒脉冲激光进行加工。研究了激光功率、扫描速度和扫描次数对铜微纳结构的影响,分析了图案化铜微纳结构的形成机制,并研究了图案化铜微纳结构的浸润特性。扫描电子显微镜结果表明,随着激光功率、扫描速度和扫描次数的增加,图案化铜微纳结构中的铜颗粒熔融现象加剧,光斑中心区域的纳米颗粒粒径逐渐增大,光斑交界处形成呈现周期性分布的微米量级单元结构。能量色散X射线光谱证明少量Cu元素分布在光斑中心区域,大量Cu元素集中在光斑交界处。随着扫描次数的增加,样品表面粗糙度和纯净水/食用油接触角均呈现先上升后下降的趋势。当扫描次数为6时,表面平均粗糙度为(1.3±0.11)μm,纯净水接触角可达(155.2±1.5)°,食用油接触角达(100.0±1.3)°。该大面积图案化铜微纳结构制备方法简单快速,无粉尘污染,在微流体芯片、集水系统和废水处理等领域具有广泛的应用前景。
A large-scale patterned Cu micro-nano structure was prepared via laser ablation technology in liquid. A Si wafer was used as the substrate, which was immersed in an ethanol solution containing Cu,2,O microparticles and processed by a nanosecond pulsed laser. The effects of the laser power, scanning speed, and number of scans on the Cu micro-nano structure in liquid, the formation mechanism of the patterned Cu micro-nano structure, and the wetting characteristics of the patterned Cu micro-nano structure were analyzed. The results of scanning electron microscopy indicated that with increases in the laser power, scanning speed, and scanning time, the melting of Cu particles in the patterned Cu micro/nanostructure intensified, the particle size of nanoparticles in the center of the laser spot increased, and a micron unit structure was formed at the junction of the laser spot, exhibiting a periodic distribution. Energy-dispersive X-ray spectroscopy confirmed that a small amount of Cu was distributed in the central region of the spot, and a large amount of Cu was concentrated at the junction of the spot. In addition, both the surface roughness and static contact angle of the sample increased with the number of scans. When the number of scans was 6, the average surface roughness, water contact angle, and oil contact angle are (1.3±0.11) μm, (155.2±1.5)°, and (100.0±1.3)°, respectively. The proposed simple and rapid preparation method for large-area patterned Cu micro/nano structures has wide application prospects in the fields of microfluidic chips, water-collection systems, and wastewater treatment.
激光烧蚀图案化铜微纳结构浸润特性二元结构
laser ablationpatterned Cu micro-nano structurewetting characteristicbinary structure
LEO LIU T, KIM C J C J. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 346(6213): 1096-1100. doi: 10.1126/science.1254787http://dx.doi.org/10.1126/science.1254787
DAVIDS P S, KIRSCH J, STARBUCK A, et al. Electrical power generation from moderate-temperature radiative thermal sources[J]. Science, 2020, 367(6484): 1341-1345. doi: 10.1126/science.aba2089http://dx.doi.org/10.1126/science.aba2089
HU C Q, LIU J, WANG J B, et al. New design for highly durable infrared-reflective coatings[J]. Light, Science & Applications, 2018, 7: 17175. doi: 10.1038/lsa.2017.175http://dx.doi.org/10.1038/lsa.2017.175
CHOI S, ZHAO Z, ZUO J W, et al. Structural color printing via polymer-assisted photochemical deposition[J]. Light, Science & Applications, 2022, 11(1): 84. doi: 10.1038/s41377-022-00776-xhttp://dx.doi.org/10.1038/s41377-022-00776-x
YAMAGUCHI S, OHDAIRA K. Degradation behavior of crystalline silicon solar cells in a cell-level potential-induced degradation test[J]. Solar Energy, 2017, 155: 739-744. doi: 10.1016/j.solener.2017.07.009http://dx.doi.org/10.1016/j.solener.2017.07.009
KIM M, HA D, KIM T. Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications[J]. Nature Communications, 2015, 6: 6247. doi: 10.1038/ncomms7247http://dx.doi.org/10.1038/ncomms7247
GEINTS Y E, MININ I V, MININ O V. Talbot photolithography optimization with engineered hybrid metal-dielectric mask: high-contrast and highly-uniform Talbot stripes[J]. Optics & Laser Technology, 2022, 148: 107776. doi: 10.1016/j.optlastec.2021.107776http://dx.doi.org/10.1016/j.optlastec.2021.107776
SHEN L D, FAN M Z, QIU M B, et al. Superhydrophobic nickel coating fabricated by scanning electrodeposition[J]. Applied Surface Science, 2019, 483: 706-712. doi: 10.1016/j.apsusc.2019.04.019http://dx.doi.org/10.1016/j.apsusc.2019.04.019
WANG Z W, SHEN L D, JIANG W, et al. Superhydrophobic nickel coatings fabricated by scanning electrodeposition on stainless steel formed by selective laser melting[J]. Surface and Coatings Technology, 2019, 377: 124886. doi: 10.1016/j.surfcoat.2019.08.015http://dx.doi.org/10.1016/j.surfcoat.2019.08.015
ZHENG J W, YANG J C, CAO W, et al. Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods[J]. Ceramics International, 2022, 48(21): 32143-32151. doi: 10.1016/j.ceramint.2022.07.154http://dx.doi.org/10.1016/j.ceramint.2022.07.154
FU J G, SUN Y H, JI, Y L, et al. Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods[J]. Journal of Materials Processing Technology, 2022, 306: 117641. doi: 10.1016/j.jmatprotec.2022.117641http://dx.doi.org/10.1016/j.jmatprotec.2022.117641
LLOYD R, ABDOLVAND A, SCHMIDT M, et al. Laser-assisted generation of self-assembled microstructures on stainless steel[J].Applied Physics A, 2008, 93(1): 117-122. doi: 10.1007/s00339-008-4646-4http://dx.doi.org/10.1007/s00339-008-4646-4
LI J R, XU J K, LIAN Z X, et al. Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation[J]. Optics & Laser Technology, 2020, 126: 106129. doi: 10.1016/j.optlastec.2020.106129http://dx.doi.org/10.1016/j.optlastec.2020.106129
RAJAB F H, LIU Z, LI L. Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring[J]. Applied Surface Science, 2019, 466: 808-821. doi: 10.1016/j.apsusc.2018.10.099http://dx.doi.org/10.1016/j.apsusc.2018.10.099
SAMANTA A, HUANG W J, CHAUDHRY H, et al. Design of chemical surface treatment for laser-textured metal alloys to achieve extreme wetting behavior[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18032-18045. doi: 10.1021/acsami.9b21438http://dx.doi.org/10.1021/acsami.9b21438
陈绒, 陈钊杰, 谢晋. 微孔气流加压对ITO玻璃激光刻蚀平面度的影响[J]. 光学 精密工程, 2022, 30(13): 1564-1571. doi: 10.37188/OPE.20223013.1564http://dx.doi.org/10.37188/OPE.20223013.1564
CHEN R, CHEN ZH J, XIE J. Influence of micropore airflow pressurization on flatness of laser etched ITO glass[J]. Optics and Precision Engineering, 2022, 30(13): 1564-1571. (in Chinese). doi: 10.37188/OPE.20223013.1564http://dx.doi.org/10.37188/OPE.20223013.1564
葛声宏, 申继文, 曾永彬.安全滤网阵列网孔激光-电解组合加工[J]. 光学 精密工程, 2023, 31(12): 1774-1784. doi: 10.37188/OPE.20233112.1774http://dx.doi.org/10.37188/OPE.20233112.1774
GE SH H, SHEN J W, ZENG Y B. Laser-electrochemical combined machining for micro-hole arrays of safety filter[J]. Optics and Precision Engineering, 2023, 31(12): 1774-1784.(in Chinese). doi: 10.37188/OPE.20233112.1774http://dx.doi.org/10.37188/OPE.20233112.1774
WANG H P, GUAN Y C, ZHENG H Y, et al. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing[J]. Applied Surface Science, 2019, 471: 347-354. doi: 10.1016/j.apsusc.2018.11.245http://dx.doi.org/10.1016/j.apsusc.2018.11.245
SU Y, WANG S Q, YAO D W, et al. Stand-off fabrication of irregularly shaped, multi-functional hydrophobic and antireflective metal surfaces using femtosecond laser filaments in air[J]. Applied Surface Science, 2019, 494: 1007-1012. doi: 10.1016/j.apsusc.2019.07.261http://dx.doi.org/10.1016/j.apsusc.2019.07.261
YAN T Y, JI L F, HONG M H. Backside wet etching of sapphire substrate by laser-induced carbothermal reduction[J]. Optics & Laser Technology, 2022, 149: 107900. doi: 10.1016/j.optlastec.2022.107900http://dx.doi.org/10.1016/j.optlastec.2022.107900
ARVI K. Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 2004, 41(2): 307-327. doi: 10.1016/s0143-8166(02)00142-2http://dx.doi.org/10.1016/s0143-8166(02)00142-2
YU M M, WENG Z K, HU J, et al. Laser interference additive manufacturing ordered Cu microstructure[J]. Applied Surface Science, 2023, 615: 156312. doi: 10.1016/j.apsusc.2022.156312http://dx.doi.org/10.1016/j.apsusc.2022.156312
ZHANG D S, GOKCE B, SOMMER S, et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol[J]. Applied Surface Science, 2016, 367: 222-230. doi: 10.1016/j.apsusc.2016.01.071http://dx.doi.org/10.1016/j.apsusc.2016.01.071
YU M M, WENG Z K, HU J, et al. A Non-enzymatic glucose sensor via uniform copper nanosphere fabricated by two-step method[J]. Optics & Laser Technology, 2021, 144: 107430. doi: 10.1016/j.optlastec.2021.107430http://dx.doi.org/10.1016/j.optlastec.2021.107430
HAN J H, LI Y G, FAN W X, et al. The ablation of Ta2O5 film by pulsed nanosecond Gaussian laser beams[J]. Optik, 2015, 126(20): 2327-2330. doi: 10.1016/j.ijleo.2015.05.127http://dx.doi.org/10.1016/j.ijleo.2015.05.127
LIANG L, YUAN J D, LIN G Z. Effect of the scanning speed on the microgroove formation regime in nanosecond-pulsed laser scanning ablation of cermet[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(1/2): 97-107. doi: 10.1007/s00170-020-05017-2http://dx.doi.org/10.1007/s00170-020-05017-2
XU Z M, ZHANG Z Y, SUN Q, et al. Effects of nanosecond-pulsed laser milling on the surface properties of Al2O3 ceramics[J]. Coatings, 2022, 12(11): 1687. doi: 10.3390/coatings12111687http://dx.doi.org/10.3390/coatings12111687
ZHANG Z, ZHANG Q L, WANG Q W, et al. Surface microstructuring of single crystalline diamond based on the accumulated energy homogenization in the nanosecond pulsed laser ablation[J]. Optics & Laser Technology, 2021, 138: 106839. doi: 10.1016/j.optlastec.2020.106839http://dx.doi.org/10.1016/j.optlastec.2020.106839
ZHANG D S, SUGIOKA K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2019, 2(3): 19000201-19000218. doi: 10.29026/oea.2019.190002http://dx.doi.org/10.29026/oea.2019.190002
YANG H, XU K C, XU C W, et al. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency[J].Nanoscale Research Letters, 2019, 14(1): 1-10. doi: 10.1186/s11671-019-3140-6http://dx.doi.org/10.1186/s11671-019-3140-6
LIU X Q, BAI B F, CHEN Q D, et al. Etching-assisted femtosecond laser modification of hard materials[J]. Opto-Electronic Advances, 2019, 2(9): 19002101-19002114. doi: 10.29026/oea.2019.190021http://dx.doi.org/10.29026/oea.2019.190021
YANG J F, LONG F, WANG R Y, et al. Design of mechanical robust superhydrophobic Cu coatings with excellent corrosion resistance and self-cleaning performance inspired by lotus leaf[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127154. doi: 10.1016/j.colsurfa.2021.127154http://dx.doi.org/10.1016/j.colsurfa.2021.127154
RYU S W, CHOO S, CHOI H J, et al. Replication of rose petal surfaces using a nickel electroforming process and UV nanoimprint lithography[J]. Applied Surface Science, 2014, 322: 57-63. doi: 10.1016/j.apsusc.2014.10.063http://dx.doi.org/10.1016/j.apsusc.2014.10.063
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. doi: 10.1021/ie50320a024http://dx.doi.org/10.1021/ie50320a024
CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546. doi: 10.1039/tf9444000546http://dx.doi.org/10.1039/tf9444000546
FENG L, ZHANG Y N, XI J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. doi: 10.1021/la703821hhttp://dx.doi.org/10.1021/la703821h
EBERT D, BHUSHAN B. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles[J]. Journal of Colloid and Interface Science, 2012, 384(1): 182-188. doi: 10.1016/j.jcis.2012.06.070http://dx.doi.org/10.1016/j.jcis.2012.06.070
MU H B, WANG Y N, TIAN Y Q, et al. Microstructure and hydrophobic properties of nano-Cu-coated wood-based composites by ultrasonic pretreatment[J]. Applied Sciences, 2020, 10(16): 5448. doi: 10.3390/app10165448http://dx.doi.org/10.3390/app10165448
LI J, ZHOU Y J, WANG W B, et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon[J]. Langmuir, 2020, 36(5): 1075-1082. doi: 10.1021/acs.langmuir.9b02273http://dx.doi.org/10.1021/acs.langmuir.9b02273
SHEN X D, ZOU B S, HUANG C W, et al. Femtosecond laser and oscillation induced large-scale periodic micro/nanostructures on copper surfaces[J]. Optics & Laser Technology, 2023, 161: 109166. doi: 10.1016/j.optlastec.2023.109166http://dx.doi.org/10.1016/j.optlastec.2023.109166
WANG D, HU C S, GU J, et al. Bamboo surface coated with polymethylsilsesquioxane/Cu-containing nanoparticles (PMS/CuNP) xerogel for superhydrophobic and anti-mildew performance[J].Journal of Wood Science, 2020, 66(1): 1-8. doi: 10.1186/s10086-020-01881-4http://dx.doi.org/10.1186/s10086-020-01881-4
DONG Z L, SUN X Y, KONG D J, et al. Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning[J]. Surface and Coatings Technology, 2020, 402: 126254. doi: 10.1016/j.surfcoat.2020.126254http://dx.doi.org/10.1016/j.surfcoat.2020.126254
TONG J W, LIU S S, PENG R T, et al. Development of a micro/nano composite super-hydrophobic silicon surface with nail-shaped texture/dual self-assembly monolayers and its wetting behavior[J]. Applied Surface Science, 2021, 544: 148803. doi: 10.1016/j.apsusc.2020.148803http://dx.doi.org/10.1016/j.apsusc.2020.148803
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构