1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
[ "黄泽贤(1999-),男,河南濮阳人,硕士研究生,2020年于郑州大学获得学士学位,主要从事遥感影像智能处理、工程仿真等方面的研究。E-mail: huangzexian@mails.ucas.ac.cn" ]
[ "姜肖楠(1981-),男,吉林市人,博士,研究员,博士生导师,2010年于哈尔滨工业大学获得博士学位,主要从事空间光学遥感相机总体技术、遥感影像处理等方面的研究。E-mail:jxn_ciomp@qq.com" ]
扫 描 看 全 文
黄泽贤, 吴凡路, 傅瑶, 等. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学精密工程, 2023,31(15):2295-2318.
HUANG Zexian, WU Fanlu, FU Yao, et al. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023,31(15):2295-2318.
黄泽贤, 吴凡路, 傅瑶, 等. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学精密工程, 2023,31(15):2295-2318. DOI: 10.37188/OPE.20233115.2295.
HUANG Zexian, WU Fanlu, FU Yao, et al. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023,31(15):2295-2318. DOI: 10.37188/OPE.20233115.2295.
海面舰船目标检测是遥感图像处理和模式识别领域备受关注的重点研究方向,对舰船目标的自动检测在民用和军用方面都具有重大意义。梳理和分析了典型基于深度学习的目标检测算法的优缺点,并进行了对比和总结;归纳了基于深度学习的舰船目标检测的技术现状,并从多尺度检测、多角度检测、小目标检测、模型轻量化和大幅宽遥感图像舰船目标检测等方面对技术现状进行了详细的介绍。最后,介绍了舰船目标识别算法常用的评价标准和现有的舰船图像数据集,探讨了遥感图像舰船目标检测算法现在所面临的问题和未来的发展趋势。
The detection of naval targets is a key area of research interest in the field of remote sensing image processing and pattern recognition. Moreover, the automatic detection of naval targets is crucial to both civil and military applications. In this study, we discuss and analyze the advantages and disadvantages of typical deep-learning-based target-detection algorithms, compare and summarize them, and summarize state-of-the-art deep-learning-based ship target detection methods. We also provide a detailed introduction to five aspects of state-of-the-art ship target detection methods, including multi-scale detection, multi-angle detection, small target detection, model light-weighting, and large-format wide remote sensing imaging. We also introduce the common evaluation criteria of ship target recognition algorithms and existing ship image datasets, and discuss the current problems faced by ship target detection algorithms using remote sensing images and future development trends in the field.
遥感图像舰船目标检测卷积神经网络图像数据集
remote sensing imageryship target detectionconvolutional neural networksimage dataset
徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4):916-931. doi: 10.37188/OPE.2020.0419http://dx.doi.org/10.37188/OPE.2020.0419
XU F, LIU J H, SUN H, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4):916-931.(in Chinese). doi: 10.37188/OPE.2020.0419http://dx.doi.org/10.37188/OPE.2020.0419
王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039. doi: 10.3724/SP.J.1004.2011.01029http://dx.doi.org/10.3724/SP.J.1004.2011.01029
WANG Y Q, MA L, TIAN Y. Overview of ship target detection and recognition in optical remote sensing images[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039.(in Chinese). doi: 10.3724/SP.J.1004.2011.01029http://dx.doi.org/10.3724/SP.J.1004.2011.01029
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/b:visi.0000029664.99615.94http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).20-25,2005, San Diego, CA, USA. IEEE, 2005: 886-893. doi: 10.1109/cvpr.2005.4http://dx.doi.org/10.1109/cvpr.2005.4
范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164.(in Chinese)
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587. doi: 10.1109/cvpr.2014.81http://dx.doi.org/10.1109/cvpr.2014.81
EVERINGHAM M, ESLAMI S M, GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. doi: 10.1007/s11263-014-0733-5http://dx.doi.org/10.1007/s11263-014-0733-5
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/tpami.2015.2389824http://dx.doi.org/10.1109/tpami.2015.2389824
EVERINGHAM M, GOOL L, WILLIAMS C K, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. doi: 10.1007/s11263-009-0275-4http://dx.doi.org/10.1007/s11263-009-0275-4
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision (ICCV).7-13,2015, Santiago, Chile. IEEE, 2016: 1440-1448. doi: 10.1109/iccv.2015.169http://dx.doi.org/10.1109/iccv.2015.169
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014: arXiv: 1409.1556. https://arxiv.org/abs/1409.1556https://arxiv.org/abs/1409.1556.
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1.7-12, 2015, Montreal, Canada. New York: ACM, 2015: 91-99.
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).27-30,2016, Las Vegas, NV, USA. IEEE, 2016: 779-788. doi: 10.1109/cvpr.2016.91http://dx.doi.org/10.1109/cvpr.2016.91
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[M]. Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6517-6525. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. 2018: arXiv: 1804.02767. https://arxiv.org/abs/1804.02767https://arxiv.org/abs/1804.02767. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common Objects in Context[M].Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740-755. doi: 10.1007/978-3-319-10602-1_48http://dx.doi.org/10.1007/978-3-319-10602-1_48
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: 2004.10934. https://arxiv.org/abs/2004.10934https://arxiv.org/abs/2004.10934.
ULTRALYTICS. YOLOv5[EB/OL]. (2020-06-03) [2022-12-01]. https://github.com/ultralytics/yolov5https://github.com/ultralytics/yolov5. doi: 10.1117/1.jei.31.3.033033http://dx.doi.org/10.1117/1.jei.31.3.033033
LAW H, DENG J. CornerNet: Detecting Objects as Paired Keypoints[M]. Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 765-781. doi: 10.1007/978-3-030-01264-9_45http://dx.doi.org/10.1007/978-3-030-01264-9_45
ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points[EB/OL]. 2019: arXiv: 1904.07850. https://arxiv.org/abs/1904.07850https://arxiv.org/abs/1904.07850. doi: 10.1090/mbk/121/79http://dx.doi.org/10.1090/mbk/121/79
ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 840-849. doi: 10.1109/cvpr.2019.00093http://dx.doi.org/10.1109/cvpr.2019.00093
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV).27-2, 2019, Seoul, Korea (South). IEEE, 2020: 9626-9635. doi: 10.1109/iccv.2019.00972http://dx.doi.org/10.1109/iccv.2019.00972
杨阳. 基于深度学习的遥感图像舰船目标检测与分类识别[D]. 武汉: 华中科技大学,2019.
YANG Y. Ship Target Detection and Classification in Remote Sensing Images Based on Deep Learning[D]. Wuhan: Huazhong University of Science and Technology,2019. (in Chinese)
NINA W, CONDORI W, MACHACA V, et al. Small Ship Detection on Optical Satellite Imagery with YOLO and YOLT[M]. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2020: 664-677. doi: 10.1007/978-3-030-39442-4_49http://dx.doi.org/10.1007/978-3-030-39442-4_49
王楠. 基于深度学习的舰船检测识别[D]. 哈尔滨: 哈尔滨工业大学,2019.
WANG N. Ship Detection and Recognition Based on Deep Learning[D]. Harbin: Harbin Institute of Technology,2019. (in Chinese)
AL-SAAD M, ABURAED N, PANTHAKKAN A, et al. Airbus ship detection from satellite imagery using frequency domain learning[C]. Proc SPIE 11862, Image and Signal Processing for Remote Sensing XXVII, 2021, 11862: 279-285. doi: 10.1117/12.2600168http://dx.doi.org/10.1117/12.2600168
LI Q P, MOU L C, LIU Q J, et al. HSF-net: multiscale deep feature embedding for ship detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7147-7161. doi: 10.1109/tgrs.2018.2848901http://dx.doi.org/10.1109/tgrs.2018.2848901
LIU S, KONG W, CHEN X, et al. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images[J]. Remote Sensing, 2022, 14(5): 1149. doi: 10.3390/rs14051149http://dx.doi.org/10.3390/rs14051149
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26,2017, Honolulu, HI, USA. IEEE, 2017: 2261-2269. doi: 10.1109/cvpr.2017.243http://dx.doi.org/10.1109/cvpr.2017.243
JIAO J, ZHANG Y, SUN H, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881-20892. doi: 10.1109/access.2018.2825376http://dx.doi.org/10.1109/access.2018.2825376
TIAN L, CAO Y, HE B K, et al. Image enhancement driven by object characteristics and dense feature reuse network for ship target detection in remote sensing imagery[J]. Remote Sensing, 2021, 13(7): 1327. doi: 10.3390/rs13071327http://dx.doi.org/10.3390/rs13071327
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26,2017, Honolulu, HI, USA. IEEE, 2017: 936-944. doi: 10.1109/cvpr.2017.106http://dx.doi.org/10.1109/cvpr.2017.106
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18-23,2018, Salt Lake City, UT, USA. IEEE, 2018: 8759-8768. doi: 10.1109/cvpr.2018.00913http://dx.doi.org/10.1109/cvpr.2018.00913
LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[EB/OL]. 2019: arXiv: 1911.09516. https://arxiv.org/abs/1911.09516https://arxiv.org/abs/1911.09516.
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/tpami.2017.2699184http://dx.doi.org/10.1109/tpami.2017.2699184
ZHANG T W, ZHANG X L, KE X. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771. doi: 10.3390/rs13142771http://dx.doi.org/10.3390/rs13142771
QING Y H, LIU W Y, FENG L Y, et al. Improved YOLO network for free-angle remote sensing target detection[J]. Remote Sensing, 2021, 13(11): 2171. doi: 10.3390/rs13112171http://dx.doi.org/10.3390/rs13112171
CHEN C, HE C, HU C H, et al. A deep neural network based on an attention mechanism for SAR ship detection in multiscale and complex scenarios[J]. IEEE Access, 2019, 7: 104848-104863. doi: 10.1109/access.2019.2930939http://dx.doi.org/10.1109/access.2019.2930939
ZHANG X H, WANG H P, XU C A, et al. A lightweight feature optimizing network for ship detection in SAR image[J]. IEEE Access, 2019, 7: 141662-141678. doi: 10.1109/access.2019.2943241http://dx.doi.org/10.1109/access.2019.2943241
QU Z F, ZHU F Z, QI C X. Remote sensing image target detection: improvement of the YOLOv3 model with auxiliary networks[J]. Remote Sensing, 2021, 13(19): 3908. doi: 10.3390/rs13193908http://dx.doi.org/10.3390/rs13193908
CHENG G, LANG C B, WU M X, et al. Feature enhancement network for object detection in optical remote sensing images[J]. Journal of Remote Sensing, 2021, 2021: 9805389. doi: 10.34133/2021/9805389http://dx.doi.org/10.34133/2021/9805389
CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. doi: 10.1109/tgrs.2016.2601622http://dx.doi.org/10.1109/tgrs.2016.2601622
LI K, CHENG G, BU S H, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337-2348. doi: 10.1109/tgrs.2017.2778300http://dx.doi.org/10.1109/tgrs.2017.2778300
HONG Z H, YANG T, TONG X H, et al. Multi-scale ship detection from SAR and optical imagery via A more accurate YOLOv3[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6083-6101. doi: 10.1109/jstars.2021.3087555http://dx.doi.org/10.1109/jstars.2021.3087555
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]. 2017 IEEE International Conference on Computer Vision (ICCV).22-29,2017, Venice, Italy. IEEE, 2017: 5562-5570. doi: 10.1109/iccv.2017.593http://dx.doi.org/10.1109/iccv.2017.593
YANG X, SUN H, FU K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1): 132. doi: 10.3390/rs10010132http://dx.doi.org/10.3390/rs10010132
KOO J, SEO J, JEON S, et al. RBox-CNN: rotated bounding box based CNN for ship detection in remote sensing image[C]. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 6-9,2018, Seattle, Washington. New York: ACM, 2018: 420-423. doi: 10.1145/3274895.3274915http://dx.doi.org/10.1145/3274895.3274915
黎经元. 不同分辨率可见光遥感图像的舰船目标检测识别方法研究[D]. 杭州: 浙江大学,2021. doi: 10.1016/j.cja.2020.09.022http://dx.doi.org/10.1016/j.cja.2020.09.022
LI J Y. Research on Detection and Recognition of Ship Targets from Visible Remote Sensing Images with Different Resolutions[D]. Hangzhou: Zhejiang University,2021. (in Chinese). doi: 10.1016/j.cja.2020.09.022http://dx.doi.org/10.1016/j.cja.2020.09.022
陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学,2019.
CHEN J. Research on Fusion Detection Algorithm of Sea Surface Target in Multi-Source Remote Sensing Images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology,2019. (in Chinese)
YANG X, YAN J C. Arbitrary-Oriented Object Detection with Circular Smooth Label[M]. Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 677-694. doi: 10.1007/978-3-030-58598-3_40http://dx.doi.org/10.1007/978-3-030-58598-3_40
SU N, HUANG Z B, YAN Y M, et al. Detect larger at once: large-area remote-sensing image arbitrary-oriented ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. doi: 10.1109/lgrs.2022.3144485http://dx.doi.org/10.1109/lgrs.2022.3144485
SUN Z Z, DAI M C, LENG X G, et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7799-7816. doi: 10.1109/jstars.2021.3099483http://dx.doi.org/10.1109/jstars.2021.3099483
WANG X Y, CUI Z Y, CAO Z J, et al. Dense docked ship detection via spatial group-wise enhance attention in SAR images[C]. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. 26-2, 2020, Waikoloa, HI, USA. IEEE, 2021: 1244-1247. doi: 10.1109/igarss39084.2020.9324162http://dx.doi.org/10.1109/igarss39084.2020.9324162
CUI Z Y, LENG J X, LIU Y, et al. SKNet: detecting rotated ships as keypoints in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8826-8840. doi: 10.1109/tgrs.2021.3053311http://dx.doi.org/10.1109/tgrs.2021.3053311
CHEN J J, XIE F Y, LU Y Y, et al. Finding arbitrary-oriented ships from remote sensing images using corner detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1712-1716. doi: 10.1109/lgrs.2019.2954199http://dx.doi.org/10.1109/lgrs.2019.2954199
WEN R, LIU, . An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system[J]. Ocean Engineering, 2021, 235: 109435. doi: 10.1016/j.oceaneng.2021.109435http://dx.doi.org/10.1016/j.oceaneng.2021.109435
WANG Z Q, ZHOU Y, WANG F T, et al. SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression[J]. Remote Sensing, 2021, 13(3): 499. doi: 10.3390/rs13030499http://dx.doi.org/10.3390/rs13030499
YOU Y N, LI Z Z, RAN B H, et al. Broad area target search system for ship detection via deep convolutional neural network[J]. Remote Sensing, 2019, 11(17): 1965. doi: 10.3390/rs11171965http://dx.doi.org/10.3390/rs11171965
SHIN H C, LEE K I, LEE C E. Data augmentation method of object detection for deep learning in maritime image[C]. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp).19-22,2020, Busan, Korea (South). IEEE, 2020: 463-466. doi: 10.1109/bigcomp48618.2020.00-25http://dx.doi.org/10.1109/bigcomp48618.2020.00-25
HU J Q, HE J Z, JIANG P, et al. SOMC: a object-level data augmentation for sea surface object detection[J]. Journal of Physics: Conference Series, 2022, 2171(1): 012033. doi: 10.1088/1742-6596/2171/1/012033http://dx.doi.org/10.1088/1742-6596/2171/1/012033
ZHIJUN, CHEN. Deep learning for autonomous ship-oriented small ship detection[J]. Safety Science, 2020, 130: 104812. doi: 10.1016/j.ssci.2020.104812http://dx.doi.org/10.1016/j.ssci.2020.104812
KONG T, YAO A B, CHEN Y R, et al. HyperNet: towards accurate region proposal generation and joint object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).27-30,2016, Las Vegas, NV, USA. IEEE, 2016: 845-853. doi: 10.1109/cvpr.2016.98http://dx.doi.org/10.1109/cvpr.2016.98
WEI S H, CHEN H M, ZHU X J, et al. Ship detection in remote sensing image based on faster R-CNN with dilated convolution[C]. 2020 39th Chinese Control Conference (CCC).27-29,2020, Shenyang, China. IEEE, 2020: 7148-7153. doi: 10.23919/ccc50068.2020.9189467http://dx.doi.org/10.23919/ccc50068.2020.9189467
ZHANG S M, WU R Z, XU K Y, et al. R-CNN-based ship detection from high resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(6): 631. doi: 10.3390/rs11060631http://dx.doi.org/10.3390/rs11060631
LIU W C, MA L, CHEN H. Arbitrary-oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 937-941. doi: 10.1109/lgrs.2018.2813094http://dx.doi.org/10.1109/lgrs.2018.2813094
CAO C Q, WU J, ZENG X D, et al. Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network[J]. Sensors, 2020, 20(17): 4696. doi: 10.3390/s20174696http://dx.doi.org/10.3390/s20174696
王浩君. 基于深度学习的光学遥感影像海上舰船目标检测研究[D]. 杭州: 杭州师范大学,2019. doi: 10.1109/igarss.2019.8898759http://dx.doi.org/10.1109/igarss.2019.8898759
WANG H J. Research on Ship Target Detection in Optical Remote Sensing Images Based on Deep Learning[D]. Hangzhou: Hangzhou Normal University,2019. (in Chinese). doi: 10.1109/igarss.2019.8898759http://dx.doi.org/10.1109/igarss.2019.8898759
韩子硕, 王春平, 付强. 基于深层次特征增强网络的SAR图像舰船检测[J]. 北京理工大学学报, 2021, 41(9): 1006-1014.
HAN Z SH, WANG CH P, FU Q. Ship detection in SAR images based on deep feature enhancement network[J]. Transactions of Beijing Institute of Technology, 2021, 41(9): 1006-1014.(in Chinese)
CHEN L, SHI W, DENG D. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 660. doi: 10.3390/rs13040660http://dx.doi.org/10.3390/rs13040660
NIE X, DUAN M Y, DING H X, et al. Attention mask R-CNN for ship detection and segmentation from remote sensing images[J]. IEEE Access, 2020, 8: 9325-9334. doi: 10.1109/access.2020.2964540http://dx.doi.org/10.1109/access.2020.2964540
HU J M, ZHI X Y, SHI T J, et al. PAG-YOLO: a portable attention-guided YOLO network for small ship detection[J]. Remote Sensing, 2021, 13(16): 3059. doi: 10.3390/rs13163059http://dx.doi.org/10.3390/rs13163059
DENG L, LI G Q, HAN S, et al. Model compression and hardware acceleration for neural networks: a comprehensive survey[J]. Proceedings of the IEEE, 2020, 108(4): 485-532. doi: 10.1109/jproc.2020.2976475http://dx.doi.org/10.1109/jproc.2020.2976475
LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]. 2017 IEEE International Conference on Computer Vision (ICCV).22-29,2017, Venice, Italy. IEEE, 2017: 2755-2763. doi: 10.1109/iccv.2017.298http://dx.doi.org/10.1109/iccv.2017.298
GUO J Y, ZHANG W C, OUYANG W L, et al. Model compression using progressive channel pruning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(3): 1114-1124. doi: 10.1109/tcsvt.2020.2996231http://dx.doi.org/10.1109/tcsvt.2020.2996231
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. 2015: arXiv: 1503.02531. https://arxiv.org/abs/1503.02531https://arxiv.org/abs/1503.02531. doi: 10.5860/choice.189890http://dx.doi.org/10.5860/choice.189890
ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. 2014: arXiv: 1412.6550. https://arxiv.org/abs/1412.6550https://arxiv.org/abs/1412.6550"
WU J X, LENG C, WANG Y H, et al. Quantized convolutional neural networks for mobile devices[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).27-30,2016, Las Vegas, NV, USA. IEEE, 2016: 4820-4828. doi: 10.1109/cvpr.2016.521http://dx.doi.org/10.1109/cvpr.2016.521
XU Y H, DAI W R, QI Y Y, et al. Iterative deep neural network quantization with lipschitz constraint[J]. IEEE Transactions on Multimedia, 2020, 22(7): 1874-1888. doi: 10.1109/tmm.2019.2949857http://dx.doi.org/10.1109/tmm.2019.2949857
ZHANG F, LIU Y B, ZHOU Y S, et al. A lossless lightweight CNN design for SAR target recognition[J]. Remote Sensing Letters, 2020, 11(5): 485-494. doi: 10.1080/2150704x.2020.1730472http://dx.doi.org/10.1080/2150704x.2020.1730472
CHEN H Y, ZHANG F, TANG B, et al. Slim and efficient neural network design for resource-constrained SAR target recognition[J]. Remote Sensing, 2018, 10(10): 1618. doi: 10.3390/rs10101618http://dx.doi.org/10.3390/rs10101618
MA X J, JI K F, XIONG B L, et al. Light-YOLOv4: an edge-device oriented target detection method for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10808-10820. doi: 10.1109/jstars.2021.3120009http://dx.doi.org/10.1109/jstars.2021.3120009
陈科峻, 张叶. 基于YOLO-v3模型压缩的卫星图像船只实时检测[J]. 液晶与显示, 2020, 35(11): 1168-1176. doi: 10.37188/yjyxs20203511.1168http://dx.doi.org/10.37188/yjyxs20203511.1168
CHEN K J, ZHANG Y. Real-time ship detection in satellite images based on YOLO-v3 model compression[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1168-1176. (in Chinese). doi: 10.37188/yjyxs20203511.1168http://dx.doi.org/10.37188/yjyxs20203511.1168
LI Y D, ZHANG S S, WANG W Q. A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. doi: 10.1109/lgrs.2020.3038901http://dx.doi.org/10.1109/lgrs.2020.3038901
HUANG H, SUN D C, WANG R F, et al. Ship target detection based on improved YOLO network[J]. Mathematical Problems in Engineering, 2020, 2020: 1-10. doi: 10.1155/2020/6402149http://dx.doi.org/10.1155/2020/6402149
DING P, ZHANG Y, DENG W J, et al. A light and faster regional convolutional neural network for object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141: 208-218. doi: 10.1016/j.isprsjprs.2018.05.005http://dx.doi.org/10.1016/j.isprsjprs.2018.05.005
ZHOU L, WEI S Y, CUI Z M, et al. Lira-YOLO: a lightweight model for ship detection in radar images[J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 950-956. doi: 10.23919/jsee.2020.000063http://dx.doi.org/10.23919/jsee.2020.000063
ZHAO Y, YIN Y, GUI G. Lightweight deep learning based intelligent edge surveillance techniques[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1146-1154. doi: 10.1109/tccn.2020.2999479http://dx.doi.org/10.1109/tccn.2020.2999479
VOINOV S, HEYMANN F, BILL R, et al. Multiclass vessel detection from high resolution optical satellite images based on deep neural networks[C]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. 28-2,2019, Yokohama, Japan. IEEE, 2019: 166-169. doi: 10.1109/igarss.2019.8900506http://dx.doi.org/10.1109/igarss.2019.8900506
聂婷. 大幅宽光学遥感图像目标检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所,2019.
NIE T. Research on Target Detection Technology of Large-Width Optical Remote Sensing Image[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
VAN ETTEN A. You only look twice: rapid multi-scale object detection in satellite imagery[EB/OL]. 2018: arXiv: 1805.09512. https://arxiv.org/abs/1805.09512https://arxiv.org/abs/1805.09512. doi: 10.1109/wacv.2019.00083http://dx.doi.org/10.1109/wacv.2019.00083
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 3974-3983. doi: 10.1109/cvpr.2018.00418http://dx.doi.org/10.1109/cvpr.2018.00418
LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]. Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. February 24-26, 2017. Porto, Portugal. SCITEPRESS-Science and Technology Publications, 2017,2: 324-331.
CHENG G, HAN J, ZHOU P, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132. doi: 10.1016/j.isprsjprs.2014.10.002http://dx.doi.org/10.1016/j.isprsjprs.2014.10.002
AIRBUS, Airbus Ship Detection Challenge. Kaggle[EB/OL]. (2018-07-30) [2022-08-30] https://www.kaggle.com/c/airbus-ship-detectionhttps://www.kaggle.com/c/airbus-ship-detection.
GALLEGO A J, PERTUSA A, GIL P. Automatic ship classification from optical aerial images with convolutional neural networks[J]. Remote Sensing, 2018, 10(4): 511. doi: 10.3390/rs10040511http://dx.doi.org/10.3390/rs10040511
CHEN K, WU M, LIU J, et al. FGSD: a dataset for fine-grained ship detection in high resolution satellite images[EB/OL]. 2020: arXiv: 2003.06832. https://arxiv.org/abs/2003.06832https://arxiv.org/abs/2003.06832.
KE, LI. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. doi: 10.1016/j.isprsjprs.2019.11.023http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
姚力波, 张筱晗, 吕亚飞, 等. FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集[J]. 中国图象图形学报, 2021, 26(10): 2337-2345.
YAO L B, ZHANG X H, LÜ Y F, et al. FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition[J]. Journal of Image and Graphics, 2021, 26(10): 2337-2345.(in Chinese)
LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA).13-14,2017, Beijing, China. IEEE, 2017: 1-6. doi: 10.1109/bigsardata.2017.8124934http://dx.doi.org/10.1109/bigsardata.2017.8124934
WANG Y Y, WANG C, ZHANG H, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765http://dx.doi.org/10.3390/rs11070765
孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852-862.
SUN X, WANG ZH R, SUN Y R, et al. AIR-SARShip-1.0: high-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852-862. (in Chinese)
WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254. doi: 10.1109/access.2020.3005861http://dx.doi.org/10.1109/access.2020.3005861
PARK K A, PARK J J, JANG J C, et al. Multi-spectral ship detection using optical, hyperspectral, and microwave SAR remote sensing data in coastal regions[J]. Sustainability, 2018, 10(11): 4064. doi: 10.3390/su10114064http://dx.doi.org/10.3390/su10114064
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. doi: 10.11834/jrs.20210259http://dx.doi.org/10.11834/jrs.20210259
LI SH T, LI C Y, KANG X D. Development status and future prospects of multi-source remote sensing image fusion[J]. Journal of Remote Sensing, 2021, 25(1): 148-166. (in Chinese). doi: 10.11834/jrs.20210259http://dx.doi.org/10.11834/jrs.20210259
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).27-30,2016, Las Vegas, NV, USA. IEEE, 2016: 761-769. doi: 10.1109/cvpr.2016.89http://dx.doi.org/10.1109/cvpr.2016.89
ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1): 44-53. doi: 10.1093/nsr/nwx106http://dx.doi.org/10.1093/nsr/nwx106
YANG Y, PAN Z X, HU Y X, et al. PistonNet: object separating from background by attention for weakly supervised ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5190-5202. doi: 10.1109/jstars.2022.3184637http://dx.doi.org/10.1109/jstars.2022.3184637
ELSKEN T, METZEN J H, HUTTER F. Neural Architecture Search[M]. Automated Machine Learning. Cham: Springer International Publishing, 2019: 63-77. doi: 10.1007/978-3-030-05318-5_3http://dx.doi.org/10.1007/978-3-030-05318-5_3
WANG X, WANG G, DANG Q, et al. PP-YOLOE-R: an efficient anchor-free rotated object detector[EB/OL]. 2022: arXiv: 2211.02386. https://arxiv.org/abs/2211.02386https://arxiv.org/abs/2211.02386.
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]. Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229. doi: 10.1007/978-3-030-58452-8_13http://dx.doi.org/10.1007/978-3-030-58452-8_13
ZHANG Y N, ER M J, GAO W X, et al. High performance ship detection via transformer and feature distillation[C]. 2022 5th International Conference on Intelligent Autonomous Systems (ICoIAS).23-25,2022, Dalian, China. IEEE, 2022: 31-36. doi: 10.1109/icoias56028.2022.9931223http://dx.doi.org/10.1109/icoias56028.2022.9931223
CHEN Y Y, XIA Z H, LIU J, et al. TSDet: end-to-end method with transformer for SAR ship detection[C]. 2022 International Joint Conference on Neural Networks (IJCNN).18-23,2022, Padua, Italy. IEEE, 2022: 1-8. doi: 10.1109/ijcnn55064.2022.9891879http://dx.doi.org/10.1109/ijcnn55064.2022.9891879
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构