1.南京工程学院 信息与通信工程学院,江苏 南京 211167
2.南京理工大学 基础教学与实验中心,江苏 南京 210094
3.南京理工大学 电子工程与光电技术学院,江苏 南京 210094
[ "冯 琤(1991-),女,江苏南京人,博士,讲师,硕士生导师,2018年于南京理工大学获得博士学位,主要从事半导体光电子材料与探测器件方面的研究。E-mail: fcheng411@163.com" ]
扫 描 看 全 文
冯琤, 刘健, 张益军, 等. 多层复杂结构GaAs基光电阴极的光学性能和量子效率[J]. 光学精密工程, 2023,31(17):2483-2492.
FENG Cheng, LIU Jian, ZHANG Yijun, et al. Optical properties and quantum efficiency of multilayer complicated GaAs-based photocathode[J]. Optics and Precision Engineering, 2023,31(17):2483-2492.
冯琤, 刘健, 张益军, 等. 多层复杂结构GaAs基光电阴极的光学性能和量子效率[J]. 光学精密工程, 2023,31(17):2483-2492. DOI: 10.37188/OPE.20233117.2483.
FENG Cheng, LIU Jian, ZHANG Yijun, et al. Optical properties and quantum efficiency of multilayer complicated GaAs-based photocathode[J]. Optics and Precision Engineering, 2023,31(17):2483-2492. DOI: 10.37188/OPE.20233117.2483.
为了更好地了解这两种结构对光电发射性能的影响,设计和生长了两种结构的光电阴极样品,对其光电发射性能进行比较,并利用薄膜光学的矩阵法推导的光学性能公式以及通过求解一维连续性方程推导的量子效率模型,对比研究了光电阴极发射层、缓冲层厚度变化以及Al,x,Ga,1-,x,As缓冲层中Al组分变化对两种结构光电阴极光学性能和量子效率的影响。这两种结构对光电发射性能的影响机理并不相同,因此作用效果也大不一样。渐变带隙结构的光电阴极通过引入内建电场和减少界面复合从而提升光电发射性能,而DBR结构则通过形成法布里-罗伯共振腔,使得特定波长的入射光在共振腔内来回反射进而被多次吸收,从而加强光电发射。激活实验结果表明,DBR结构样品的发射效率与渐变带隙结构相比具有明显优势,尤其是在755,808和880 nm处有更高的发射效率峰值,可分别提升37.5%,38.9%和47.0%。最后利用模型拟合了量子效率曲线,验证了光学性能参量对复杂结构光电阴极的重要影响及理论模型的合理性。
To comprehensively assess the impact of these structures on photoelectric emission performance, we design and cultivate photocathode samples featuring both configurations, subsequently comparing their photoemission performance. Optical properties and the quantum efficiency model are ascertained through the matrix method of thin-film optics and one-dimensional continuity equations, respectively. We examine and analyze the effects of varying the thickness of the emission layer, altering the buffer layer, and adjusting the Al component within the buffer layer on the optical properties and quantum efficiencies of these two photocathode structures via simulations. These two structures exert distinct influences on photoelectric emission performance due to their disparate mechanisms. Consequently, their effects on photoemission performance exhibit substantial differences. The photocathode with the graded bandgap structure improves the photoelectric emission performance by introducing a built-in electric field and reducing interface recombination. Conversely, the DBR structure augments the photoelectric emission by forming a Fabry Robb resonant cavity, so that incident light of a specific wavelength can be reflected back and forth in the resonant cavity and absorbed many times. The results of an activation experiment indicate that the emission efficiency of DBR structures exceeds that of graded bandgap structures. Notably, higher emission efficiency peak values are obtained at the wavelengths of 755, 808, and 880 nm, which can be improved by 37.5%, 38.9%, and 47.0%, respectively. Furthermore, the quantum efficiency curves are well fitted using the derived model, confirming the importance of optical performance parameters and the model’s validity.
GaAs光电阴极多层复杂结构光学性能量子效率
GaAs photocathodemultilayer complicated structureoptical propertiesquantum efficiency
CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review, 2013, 21(2): 153-181. doi: 10.2478/s11772-013-0089-3http://dx.doi.org/10.2478/s11772-013-0089-3
ZOU J J, GE X W, ZHANG Y J, et al. Negative electron affinity GaAs wire-array photocathodes[J]. Optics Express, 2016, 24(5): 4632-4639. doi: 10.1364/oe.24.004632http://dx.doi.org/10.1364/oe.24.004632
CHENG F, ZHANG Y J, QIAN Y SH, et al. Improved quantum efficiency and stability of GaAs photocathode using favorable illumination during activation[J]. Ultramicroscopy, 2019, 202:128-132. doi: 10.1016/j.ultramic.2019.04.010http://dx.doi.org/10.1016/j.ultramic.2019.04.010
蔡志鹏, 杨文正, 唐伟东, 等. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析[J]. 物理学报, 2012, 61(18): 513-518. doi: 10.7498/aps.61.187901http://dx.doi.org/10.7498/aps.61.187901
CAI ZH P, YANG W ZH, TANG W D, et al. Theoretical analysis of response characteristics for the large exponential-doping transmission-mode GaAs photocathodes[J]. Acta Physica Sinica, 2012, 61(18): 513-518.(in Chinese). doi: 10.7498/aps.61.187901http://dx.doi.org/10.7498/aps.61.187901
SCHWEDE J W, SARMIENTO T, NARASIMHAN V K, et al. Photon-enhanced thermionic emission from heterostructures with low interface recombination[J]. Nature Communications, 2013, 4: 1576. doi: 10.1038/ncomms2577http://dx.doi.org/10.1038/ncomms2577
JIN X G, OHKI S, ISHIKAWA T, et al. Analysis of quantum efficiency improvement in spin-polarized photocathode[J]. Journal of Applied Physics, 2016, 120(16): 164501. doi: 10.1063/1.4965723http://dx.doi.org/10.1063/1.4965723
赵静, 覃翠, 刘伟伟, 等. 不同掺杂砷化镓光电阴极光电发射性能分析[J]. 光学学报, 2016, 36(10): 1023001. doi: 10.3788/aos201636.1023001http://dx.doi.org/10.3788/aos201636.1023001
ZHAO J, QIN C, LIU W W, et al. Photoemission performance analysis of GaAs photocathodes with different doping concentrations[J]. Acta Optica Sinica, 2016, 36(10): 1023001.(in Chinese). doi: 10.3788/aos201636.1023001http://dx.doi.org/10.3788/aos201636.1023001
王自衡, 李诗曼, 石峰, 等. InGaAs 光电阴极的Cs/NF3激活[J], 光学 精密工程, 2023, 31(9): 1277-1284. doi: 10.37188/ope.20233109.1277http://dx.doi.org/10.37188/ope.20233109.1277
WANG Z H, LI SH M, SHI F, et al. Cs/NF3 activation of InGaAs photocathode[J]. Opt. Precision Eng., 2023, 31(9): 1277-1284. (in Chinese). doi: 10.37188/ope.20233109.1277http://dx.doi.org/10.37188/ope.20233109.1277
ZHANG Y J, ZHAO J, ZOU J J, et al. The high quantum efficiency of exponential-doping AlGaAs/GaAs photocathodes grown by metalorganic chemical vapor deposition[J]. Chinese Physics Letters, 2013(4): 88-91. doi: 10.1088/0256-307x/30/4/044205http://dx.doi.org/10.1088/0256-307x/30/4/044205
LIU W, CHEN Y Q, LU W T, et al. Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector[J]. Applied Physics Letters, 2016, 109(25): 252104. doi: 10.1063/1.4972180http://dx.doi.org/10.1063/1.4972180
ZHAO J, SHEN W K, CHANG B K, et al. Comparison of module structure of wideband response GaAs photocathode grown by MBE and MOCVD[J]. Optics Communications, 2014, 328:129-134. doi: 10.1016/j.optcom.2014.04.071http://dx.doi.org/10.1016/j.optcom.2014.04.071
CASEY Jr H C, SELL D D, WECHT K W. Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV[J]. Journal of Applied Physics, 1975, 46(1): 250-257. doi: 10.1063/1.321330http://dx.doi.org/10.1063/1.321330
LEVINSHTEIN M, RUMYANSTEV S, SHUR M. Handbook Series on Semiconductor Parameters(Vol.2)[M]. Singapore: World Scientific, 1996. doi: 10.1142/2046-vol2http://dx.doi.org/10.1142/2046-vol2
ZOU J J, CHANG B K, CHEN H L, et al. Variation of quantum-yield curves for GaAs photocathodes under illumination[J]. Journal of Applied Physics, 2007, 101(3): 033126. doi: 10.1063/1.2435075http://dx.doi.org/10.1063/1.2435075
ANTYPAS G A, JAMES L W, UEBBING J J. Operation of III-V semiconductor photocathodes in the semitransparent mode[J]. Journal of Applied Physics, 1970, 41(7): 2888-2894. doi: 10.1063/1.1659333http://dx.doi.org/10.1063/1.1659333
赵静, 常本康, 熊雅娟, 等. 发射层对指数掺杂Ga1-xAlx As/GaAs光阴极性能的影响[J]. 电子器件, 2011, 34(2):119-124.
ZHAO J, CHANG B K, XIONG Y J, et al. Influence of the active layer on exponential-doping Ga1-xAlxAs/GaAs photocathode performances[J]. Chinese Journal of Electron Devices, 2011, 34(2):119-124.(in Chinese)
JING Z, CHANG B K, XIONG Y J, et al. Influence of the antireflection, window, and active layers on optical properties of exponential-doping transmission-mode GaAs photocathode modules[J]. Optics Communications, 2012, 285(5):589-593. doi: 10.1016/j.optcom.2011.11.043http://dx.doi.org/10.1016/j.optcom.2011.11.043
张益军. 变掺杂GaAs光电阴极研制及其特性评估[D]. 南京: 南京理工大学, 2012.
ZHANG Y J. Development and Characteristics Evaluation of Variable Doped GaAs Photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)
FENG C, ZHANG Y J, LIU J, et al. Effect of graded bandgap structure on photoelectric performance of transmission-mode AlxGa1-xAs/GaAs photocathode modules[J]. Applied Optics, 2017, 56(32): 9044-9049. doi: 10.1364/ao.56.009044http://dx.doi.org/10.1364/ao.56.009044
LIN T, XIE J N, ZHANG T J, et al. Studies on the material and photoluminescence characteristics of the structure of Al0.9Ga0.1As/GaAs DBR with varied doping[J]. Journal of Electronic Materials, 2023, 52(1): 730-737. doi: 10.1007/s11664-022-10043-9http://dx.doi.org/10.1007/s11664-022-10043-9
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构