1.强脉冲辐射环境模拟与效应国家重点实验室(西北核技术研究所),陕西 西安 710024
[ "李 冬(1998-),男,陕西西安人,硕士研究生,研究实习员,2020年于西安交通大学获得学士学位,2022年于西北核技术研究所获得硕士学位,主要从事脉冲辐射场成像的研究。E-mail: lidong@nint.ac.cn" ]
扫 描 看 全 文
李冬, 杨凯翔, 盛亮, 等. GaAs光阴极像增强器的选通特性[J]. 光学精密工程, 2023,31(17):2505-2514.
LI Dong, YANG Kaixiang, SHENG Liang, et al. Gating characteristics of GaAs photocathode image intensifier[J]. Optics and Precision Engineering, 2023,31(17):2505-2514.
李冬, 杨凯翔, 盛亮, 等. GaAs光阴极像增强器的选通特性[J]. 光学精密工程, 2023,31(17):2505-2514. DOI: 10.37188/OPE.20233117.2505.
LI Dong, YANG Kaixiang, SHENG Liang, et al. Gating characteristics of GaAs photocathode image intensifier[J]. Optics and Precision Engineering, 2023,31(17):2505-2514. DOI: 10.37188/OPE.20233117.2505.
针对GaAs光阴极像增强器在ns级选通成像中的时空特性,通过引入传输线阻抗完善了光阴极径向RLC传输模型,更准确地描述了选通过程中光快门的变化趋势,实验证实去除防离子反馈膜有利于改善光快门,使得光快门与电快门更为一致,在驱动电脉冲宽度为17.7 ns时,光快门宽度与电快门宽度的差异仅为1.1 ns;基于蒙特卡罗模拟方法,建立了光电子在分段线性快门脉冲电压驱动下经过第一近贴后的空间弥散模型,模拟结果表明:GaAs光阴极相较于S20光阴极在选通成像中的空间分辨下降更小。在20 lp/mm时,GaAs的动态空间分辨是静态空间分辨的80%,而S20光阴极不足70%,理论模拟与实验结果相一致,所建立的模型可用来分析和优化像增强器结构参数,为优化选通成像性能提供理论依据。
Considering the spacetime characteristics of the GaAs photocathode image intensifier in ns-level gated imaging, this study undertakes a theoretical simulation and experimental validation. For theoretical simulation, the radial RLC transmission model of the photocathode is enhanced by incorporating transmission line impedance. This refinement enables a more accurate description of the optical shutter's behavior during the gating process. Experimental evidence confirms that removing the anti-ion feedback film enhances the optical shutter, aligning it closely with the electric shutter. Specifically, when the driving electric pulse width is 17.7 ns, the difference between the optical shutter width and the electric shutter width is merely 1.1 ns. For experimental validation, a spatial dispersion model of photoelectrons, driven by a segmented linear shutter pulse voltage after the first close attachment, is established using the Monte Carlo simulation method. Simulation outcomes indicate that the spatial resolution degradation of the GaAs photocathode in gating imaging is inferior to that of the S20 photocathode. At a spatial resolution of 20-line pairs per millimeter (lp/mm), GaAs maintains 80% of its static spatial resolution, whereas the corresponding figure for the S20 photocathode is less than 70%. Notably, the theoretical simulation aligns seamlessly with the experimental results, affirming the applicability of the model for analyzing and optimizing image intensifier structural parameters. This model serves as a foundational framework for enhancing gating imaging performance.
GaAs光阴极选通特性动态空间分辨像增强器
GaAs photocathodegating characteristicsdynamic spatial resolutionimage intensifier
刘永棠, 盛亮, 李阳, 等. 周期调制结构平面薄膜电爆炸实验研究[J]. 物理学报, 2021, 70(6):248-259. doi: 10.7498/aps.70.20201574http://dx.doi.org/10.7498/aps.70.20201574
LIU Y T, SHENG L, LI Y, et al. Explosion of thin flat foils with periodical modified structure[J]. Acta Physica Sinica, 2021, 70(6):248-259.(in Chinese). doi: 10.7498/aps.70.20201574http://dx.doi.org/10.7498/aps.70.20201574
FRENJE J. Nuclear diagnostics for inertial confinement fusion (ICF) plasmas [J]. Plasma Physics and Controlled Fusion, 2020, 62(2): 023001. doi: 10.1088/1361-6587/ab5137http://dx.doi.org/10.1088/1361-6587/ab5137
江孝国, 杨礼兵, 黄显宾, 等. Z “箍缩” 的时间分辨测量技术研究[J]. 光子学报, 2007, 36(5):922-925.
JIANG X G, YANG L B, HUANG X B, et al. Time-resolved measurement technology for Z pinch[J]. Acta Photonica Sinica, 2007, 36(5):922-925.(in Chinese)
李景镇, 龚向东, 李善祥, 等. Miller型超高速摄影系统经典设计理论的研究[J]. 光子学报, 2004, 33(6):739-742. doi: 10.1007/BF02911033http://dx.doi.org/10.1007/BF02911033
LI J ZH, GONG X D, LI SH X, et al. Study on classical designing theory of miller type ultra high speed photographic system[J]. Acta Photonica Sinica, 2004, 33(6):739-742. (in Chinese). doi: 10.1007/BF02911033http://dx.doi.org/10.1007/BF02911033
田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32(11): 200119. doi: 10.11884/HPLPB202032.200119http://dx.doi.org/10.11884/HPLPB202032.200119
TIAN J SH. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32(11): 200119.(in Chinese). doi: 10.11884/HPLPB202032.200119http://dx.doi.org/10.11884/HPLPB202032.200119
LEE S J, THEERTHAGIRI J, CHOI M Y. Time-resolved dynamics of laser-induced cavitation bubbles during production of Ni nanoparticles via pulsed laser ablation in different solvents and their electrocatalytic activity for determination of toxic nitroaromatics[J]. Chemical Engineering Journal, 2022, 427: 130970. doi: 10.1016/j.cej.2021.130970http://dx.doi.org/10.1016/j.cej.2021.130970
ZHOU X, SUN J F, JIANG P, et al. Theoretical and experimental investigations on speckle suppression of dual-wavelength imaging LiDAR by vibrating the multimode fiber[J]. Measurement, 2022, 188: 110588. doi: 10.1016/j.measurement.2021.110588http://dx.doi.org/10.1016/j.measurement.2021.110588
CALVER T I, SHATTAN M B, PERRAM G P. Shock front detachment during pulsed laser ablation of graphite[J].Applied Physics A, 2022, 128(1): 15. doi: 10.1007/s00339-021-05146-9http://dx.doi.org/10.1007/s00339-021-05146-9
张天舒. 高速分幅相机光学系统设计与研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017: 2-4.
ZHANG T SH. Optical Design and Study of High-speed Framing Camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017: 2-4.(in Chinese)
刘宁文, 畅里华, 肖正飞, 等. 门控型像增强器开门时间测量[J]. 强激光与粒子束, 2012, 24(10): 2447-2450. doi: 10.3788/hplpb20122410.2447http://dx.doi.org/10.3788/hplpb20122410.2447
LIU N W, CHANG L H, XIAO ZH F, et al. Measuring gating time of gated image intensifier[J]. High Power Laser and Particle Beams, 2012, 24(10): 2447-2450.(in Chinese). doi: 10.3788/hplpb20122410.2447http://dx.doi.org/10.3788/hplpb20122410.2447
谢红卫, 陈进川, 李宏云, 等. MCP 像增强器开门/关门时间特性研究[J]. 核电子学与探测技术, 2014, 34(10): 1196-1200. doi: 10.3969/j.issn.0258-0934.2014.10.010http://dx.doi.org/10.3969/j.issn.0258-0934.2014.10.010
XIE H W, CHEN J CH, LI H Y, et al. The study of turn on/turn off gated mcp image intensifier[J]. Nuclear Electronics & Detection Technology, 2014, 34(10): 1196-1200.(in Chinese). doi: 10.3969/j.issn.0258-0934.2014.10.010http://dx.doi.org/10.3969/j.issn.0258-0934.2014.10.010
朱斌, 滕建, 吴玉迟, 等. 基于超短激光脉冲扫描法的超高速分幅相机时间响应特性测定[J]. 光子学报, 2018, 47(10): 1011001. doi: 10.3788/gzxb20184710.1011001http://dx.doi.org/10.3788/gzxb20184710.1011001
ZHU B, TENG J, WU Y CH, et al. Mensuration on the time response characteristic of ultra high speed framing camera based on scanning method with ultra-short laser pulse[J]. Acta Photonica Sinica, 2018, 47(10): 1011001.(in Chinese). doi: 10.3788/gzxb20184710.1011001http://dx.doi.org/10.3788/gzxb20184710.1011001
盛亮, 黑东炜, 邱孟通, 等. 纳秒级时间选通成像系统动态空间分辨率[J]. 核电子学与探测技术, 2008, 28(2): 274-277. doi: 10.3969/j.issn.0258-0934.2008.02.015http://dx.doi.org/10.3969/j.issn.0258-0934.2008.02.015
SHENG L, HEI D W, QIU M T, et al. Dynamic resolution of nanosecond time-gated imaging system[J]. Nuclear Electronics & Detection Technology, 2008, 28(2): 274-277. (in Chinese). doi: 10.3969/j.issn.0258-0934.2008.02.015http://dx.doi.org/10.3969/j.issn.0258-0934.2008.02.015
王自衡, 李诗曼, 石峰, 等. InGaAs光电阴极的Cs/NF3激活[J]. 光学 精密工程, 2023, 31(9): 1277-1284. doi: 10.37188/ope.20233109.1277http://dx.doi.org/10.37188/ope.20233109.1277
WANG Z H, LI SH M, SHI F, et al. Cs/NF3 activation of InGaAs photocathode[J]. Opt. Precision Eng., 2023, 31(9): 1277-1284.(in Chinese). doi: 10.37188/ope.20233109.1277http://dx.doi.org/10.37188/ope.20233109.1277
田慧军, 刘巧莉, 岳恒, 等. 高比探测率和高速石墨烯/n-GaAs复合结构的光电探测器[J]. 中国光学, 2021, 14(1): 206-212. doi: 10.37188/co.2020-0153http://dx.doi.org/10.37188/co.2020-0153
TIAN H J, LIU Q L, YUE H, et al. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212.(in Chinese). doi: 10.37188/co.2020-0153http://dx.doi.org/10.37188/co.2020-0153
REN L, CHANG B K. Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode[J]. Chinese Physics B, 2011, 20(8): 087308. doi: 10.1088/1674-1056/20/8/087308http://dx.doi.org/10.1088/1674-1056/20/8/087308
赵静, 张益军, 常本康, 等. 高性能透射式GaAs光电阴极量子效率拟合与结构研究[J]. 物理学报, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802http://dx.doi.org/10.7498/aps.60.107802
ZHAO J, ZHANG Y J, CHANG B K, et al. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode[J]. Acta Physica Sinica, 2011, 60(10): 107802.(in Chinese). doi: 10.7498/aps.60.107802http://dx.doi.org/10.7498/aps.60.107802
朱宇峰, 张妮, 李丹, 等. 微通道板防离子反馈膜阈值电压特性研究[J]. 应用光学, 2017, 38(3): 476-479, 498.
ZHU Y F, ZHANG N, LI D, et al. Threshold voltage characteristics of ion barrier film of MCP[J]. Journal of Applied Optics, 2017, 38(3): 476-479, 498.(in Chinese)
程耀进, 向世明, 师宏立. 三代微光像增强器分辨力计算理论模型[J]. 应用光学, 2007, 28(5): 578-581. doi: 10.3969/j.issn.1002-2082.2007.05.012http://dx.doi.org/10.3969/j.issn.1002-2082.2007.05.012
CHENG Y J, XIANG SH M, SHI H L. Theoretical model for resolution calculation of third generation image intensifiers[J]. Journal of Applied Optics, 2007, 28(5): 578-581. (in Chinese). doi: 10.3969/j.issn.1002-2082.2007.05.012http://dx.doi.org/10.3969/j.issn.1002-2082.2007.05.012
武梅娟, 任玲, 常本康, 等. 运用蒙特卡罗方法分析像增强器分辨率[J]. 真空科学与技术学报, 2012, 32(9): 798-801. doi: 10.3969/j.issn.1672-7126.2012.09.07http://dx.doi.org/10.3969/j.issn.1672-7126.2012.09.07
WU M J, REN L, CHANG B K, et al. Simulation of image intensifier resolution in Monte Carlo method[J]. Journal of Vacuum Science and Technology, 2012, 32(9): 798-801.(in Chinese). doi: 10.3969/j.issn.1672-7126.2012.09.07http://dx.doi.org/10.3969/j.issn.1672-7126.2012.09.07
邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. doi: 10.3788/gzxb20204912.19http://dx.doi.org/10.3788/gzxb20204912.19
QIU Y F, YAN W L, HUA S D. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003.(in Chinese). doi: 10.3788/gzxb20204912.19http://dx.doi.org/10.3788/gzxb20204912.19
REN L, SHI F, GUO H, et al. Numerical calculation method of modulation transfer function for preproximity focusing electron-optical system[J]. Applied Optics, 2013, 52(8): 1641. doi: 10.1364/ao.52.001641http://dx.doi.org/10.1364/ao.52.001641
冯炽焘. 像管的设计与分析[M]. 北京: 国防工业出版社, 1990: 183-186.
FENG CH T. Design and Analysis of Image Tube[M]. Beijing: National Defense Industry Press, 1990: 183-186.(in Chinese)
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构