1.国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2.国防科技大学 南湖之光实验室,湖南 长沙 410073
3.海军装备部驻湘潭地区军事代表室,湖南 湘潭 411100
[ "于旭东(1982-),男,吉林长春人,博士,副研究员,2005年、2011年于国防科技大学分别获得学士和博士学位,主要从事光电惯性技术、激光陀螺技术方面的研究。E-mail: wind0909@163.com" ]
[ "李 鼎(1997-),男,湖南益阳人,博士研究生,2015年于南华大学获得学士学位,2021年于海军工程大学获得硕士学位,主要从事光电惯性技术、激光陀螺技术方面的研究。E-mail: leadingusc@163.com" ]
扫 描 看 全 文
于旭东, 李鼎, 高立夫, 等. 长航时旋转调制惯导系统试验测试评估[J]. 光学精密工程, 2023,31(17):2525-2533.
YU Xudong, LI Ding, GAO Lifu, et al. Test and evaluation of long-endurance rotary modulation inertial navigation system[J]. Optics and Precision Engineering, 2023,31(17):2525-2533.
于旭东, 李鼎, 高立夫, 等. 长航时旋转调制惯导系统试验测试评估[J]. 光学精密工程, 2023,31(17):2525-2533. DOI: 10.37188/OPE.20233117.2525.
YU Xudong, LI Ding, GAO Lifu, et al. Test and evaluation of long-endurance rotary modulation inertial navigation system[J]. Optics and Precision Engineering, 2023,31(17):2525-2533. DOI: 10.37188/OPE.20233117.2525.
随着旋转调制惯导系统精度的不断提升,单次导航实验周期越来越长,试验周期急剧增加,为试验鉴定和评估带来了困难。为合理评价长航时旋转调制惯导系统的导航精度,首先介绍了一种兼具自标定、自对准功能和导航功能的一体式旋转调制方案,将惯导系统自标定、自对准状态和导航过程中的旋转路径进行统一;然后提出了一种基于重复样本的长航时旋转调制惯导系统长周期导航测试方法,该方法可以更高效快捷地完成所需全部导航测试评估任务;最后,利用实验室30天的长航时导航测试数据进行了实验验证,最大定位误差为0.71(归一化),与独立航次统计结果相当,同时利用车载动态试验验证明了该方法的有效性和可行性。该方法可以大幅缩短导航系统测试的周期,为长航时惯导装备研制和试验测试评估提供有效手段。
Prior to formally equipping an inertial navigation system (INS), its navigation accuracy must be evaluated based on the national military standards. Owing to the continuous accuracy improvements of the rotary modulation INS, the duration of a single-navigation experimental cycle is increasing, thereby causing challenges to test and evaluate the INS system. Thus, to evaluate the navigation accuracy of a long-endurance rotary modulation INS, first, this study introduces an integrated rotary modulation scheme with self-calibration, self-alignment, and navigation functions that unify the self-calibration and self-alignment state of the INS and the rotation path in the navigation process. Subsequently, this study proposes a long-period navigation test method based on repeated samples for long-endurance rotary modulation INS to improve all required navigation testing and evaluation tasks. Finally, the study obtains and uses 30-day long-endurance navigation laboratory-test data to test and verify the maximum position error (0.71, normalized, which is equivalent to the statistical results of independent voyages). Furthermore, the effectiveness and feasibility of the proposed method are verified using a vehicle dynamics test. The results show that the proposed method can significantly shorten the test cycle. Thus, this study provides an effective approach for developing and evaluating long-endurance rotary modulation INS.
惯性导航系统旋转调制长航时测试评估
inertial navigationrotary modulationlong-endurancetest and evaluation
TITTERTON D H, WESTON J L. Strapdown Inertial Navigation Technology[M]. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics, 2004. doi: 10.1049/pbra017ehttp://dx.doi.org/10.1049/pbra017e
乔川, 李晓, 庞少龙, 等. 基于单星测量的星光惯性组合导航[J]. 光学 精密工程, 2021, 29(3): 503-512. doi: 10.37188/OPE.20212903.0503http://dx.doi.org/10.37188/OPE.20212903.0503
QIAO CH, LI X, PANG SH L, et al. Starlight-inertial integrated navigation based on single star vector[J]. Opt. Precision Eng., 2021, 29(3): 503-512.(in Chinese). doi: 10.37188/OPE.20212903.0503http://dx.doi.org/10.37188/OPE.20212903.0503
LEVINSON E, MAJURE R. Accuracy enhancement techniques applied to the marine ring laser inertial navigator (MARLIN)[J]. Annual of Navigation, 1987, 34: 64-86. doi: 10.1002/j.2161-4296.1987.tb01490.xhttp://dx.doi.org/10.1002/j.2161-4296.1987.tb01490.x
YUAN B L, LIAO D, HAN S L. Error compensation of an optical gyro INS by multi-axis rotation [J]. Measurement Science and Technology, 2012, 23:025102. doi: 10.1088/0957-0233/23/2/025102http://dx.doi.org/10.1088/0957-0233/23/2/025102
WANG Z C, XIE Y P, YU X D, et al. A system-level calibration method including temperature-related error coefficients for a strapdown inertial navigation system [J]. Measurement Science and Technology,2021,32 (11): 115117. doi: 10.1088/1361-6501/ac0acdhttp://dx.doi.org/10.1088/1361-6501/ac0acd
于旭东, 王宇, 张鹏飞, 等. 单轴旋转惯导系统中陀螺漂移的精确校准[J]. 光学 精密工程, 2012, 20(6): 1201-1207. doi: 10.3788/ope.20122006.1201http://dx.doi.org/10.3788/ope.20122006.1201
YU X D, WANG Y, ZHANG P F, et al. Calibration of RLG drift in single-axis rotation INS[J]. Opt. Precision Eng., 2012, 20(6): 1201-1207.(in Chinese). doi: 10.3788/ope.20122006.1201http://dx.doi.org/10.3788/ope.20122006.1201
王林, 吴文启, 魏国, 等. 联合旋转调制激光陀螺惯导性能在线评估[J]. 光学 精密工程, 2018, 26(3): 578-587. doi: 10.3788/ope.20182603.0578http://dx.doi.org/10.3788/ope.20182603.0578
WANG L, WU W Q, WEI G, et al. Online performance evaluation of RLG INS based on joint rotation and modulation[J]. Opt. Precision Eng., 2018, 26(3): 578-587.(in Chinese). doi: 10.3788/ope.20182603.0578http://dx.doi.org/10.3788/ope.20182603.0578
舰艇惯性导航系统设计定型试验规程: GJB 427A-2009[S]. 葫芦岛:中国人民解放军海军第一试验区,2009. doi: 10.1109/ccdc.2009.5194612http://dx.doi.org/10.1109/ccdc.2009.5194612
Code for finalization test for ship inertial navigation system: GJB 427A-2009[S]. Huludao: The first experimental area of the PLA navy, 2009.(in Chinese). doi: 10.1109/ccdc.2009.5194612http://dx.doi.org/10.1109/ccdc.2009.5194612
周金亮. 舰船惯性导航系统试验方法研究[J]. 现代导航, 2014, 5(1): 26-28.
ZHOU J L. Experiment method research on ship inertial navigation system[J]. Modern Navigation, 2014, 5(1): 26-28.(in Chinese)
谢元平, 范会迎, 王子超, 等. 双轴旋转调制捷联惯导系统旋转方案优化设计[J]. 中国惯性技术学报, 2021, 29(4): 421-427, 436.
XIE Y P, FAN H Y, WANG Z CH, et al. Optimization design of rotation scheme for dual-axis rotation-modulation strapdown inertial navigation System[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 421-427, 436.(in Chinese)
FAN H Y, XIE Y P,WANG Z C,et al. A unified scheme for rotation modulation and self-calibration of dual-axis rotating SINS [J]. Measurement Science and Technology, 2021, 32:115113. doi: 10.1088/1361-6501/ac12ffhttp://dx.doi.org/10.1088/1361-6501/ac12ff
YU X D, WANG Z C, FAN H Y, et al. Suppression of the G-sensitive drift of laser gyro in dual-axis rotational inertial navigation system[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 822-830. doi: 10.23919/jsee.2021.000071http://dx.doi.org/10.23919/jsee.2021.000071
CAI Q Z, YANG G L, SONG N F, et al. Systematic calibration for ultra-high accuracy inertial measurement units[J]. Sensors (Basel, Switzerland), 2016, 16(6): 940. doi: 10.3390/s16060940http://dx.doi.org/10.3390/s16060940
赵坤, 胡小毛, 刘伯晗. 舰船长航时光纤陀螺惯导系统技术及未来发展[J]. 中国惯性技术学报, 2022, 30(3): 281-287.
ZHAO K, HU X M, LIU B H. Technology and future development of long-endurance fiber optic gyro inertial navigation system for ships[J]. Journal of Chinese Inertial Technology, 2022, 30(3): 281-287.(in Chinese)
袁保伦, 饶谷音. 光学陀螺旋转惯导系统原理探讨[J]. 国防科技大学学报, 2006, 28(6): 76-80. doi: 10.3969/j.issn.1001-2486.2006.06.016http://dx.doi.org/10.3969/j.issn.1001-2486.2006.06.016
YUAN B L, RAO G Y. On the theory of optical gyro rotating inertial navigation system[J]. Journal of National University of Defense Technology, 2006, 28(6): 76-80.(in Chinese). doi: 10.3969/j.issn.1001-2486.2006.06.016http://dx.doi.org/10.3969/j.issn.1001-2486.2006.06.016
0
浏览量
206
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构