1.郑州大学 机械与动力工程学院热能系统节能技术与 装备教育部工程研究中心,河南 郑州 450001
2.河南晶华膜技真空科技有限公司,河南 焦作 454150
3.中国原子能科学研究院,北京 102413
[ "郑锦华(1965-),男,湖南常德人,特聘教授,1987年、1990年于郑州大学分别获学士、硕士学位,2005年于日本国立广岛大学获博士学位,现为郑州大学机械与动力工程学院特聘教授,主要从事功能性薄膜的研究开发,在CrAlN薄膜、SiC薄膜和DLC薄膜方面的研究有独特造诣,并在日本实现了产业化生产。E-mail:zhengjh2005@aliyun.com" ]
[ "李志雄(1998-),男,甘肃定西人,硕士研究生,2020年于郑州大学获得学士学位,从事功能性薄膜材料的研究开发,主要从事CrAlN薄膜和DLC薄膜材料的研究工作。E-mail: lzxiong314@163.com" ]
扫 描 看 全 文
郑锦华, 梅诗阳, 李志雄, 等. 磁场及靶基距对CrAlN薄膜性能的影响[J]. 光学精密工程, 2023,31(18):2627-2635.
ZHENG Jinhua, MEI Shiyang, LI Zhixiong, et al. Effect of magnetic field and target-substrate distance on properties of CrAlN films[J]. Optics and Precision Engineering, 2023,31(18):2627-2635.
郑锦华, 梅诗阳, 李志雄, 等. 磁场及靶基距对CrAlN薄膜性能的影响[J]. 光学精密工程, 2023,31(18):2627-2635. DOI: 10.37188/OPE.20233118.2627.
ZHENG Jinhua, MEI Shiyang, LI Zhixiong, et al. Effect of magnetic field and target-substrate distance on properties of CrAlN films[J]. Optics and Precision Engineering, 2023,31(18):2627-2635. DOI: 10.37188/OPE.20233118.2627.
为了改善CrAlN薄膜与基材间的结合强度,提高其耐磨性能。利用阴极弧溅射技术,在45钢基材上沉积了CrAlN薄膜。分析了磁场和靶基距对CrAlN薄膜性能的作用机理,考察了磁场对薄膜的厚度、表面形貌、结合力以及耐磨性能的影响,同时与无磁场时沉积的薄膜进行了对比。结果表明:薄膜膜厚、表面粗糙度、液滴沉积尺寸及数量随着靶基距增大而减小;相较于无磁场样品,有磁场样品的表面粗糙度更小,曲率半径更大,结合力得到了提高。有磁场时界面结合力约为60 N,且随着靶基距变化不大,而无磁场时结合力变化较大。两者在同条件下对比,结合力提高了20%~80%不等;薄膜摩擦系数与磨损率随靶基距增大而减小,同靶基距时有磁场样品的摩擦系数及磨损率较小。当存在磁场且靶基距在160~180 mm时,沉积的CrAlN薄膜性能最优。该研究结果为制备具有更高性能的CrAlN薄膜提供了重要参考。
To improve the binding strength between a chromium aluminum nitride (CrAlN) film and substrate and enhance the film's wear resistance, a CrAlN film was deposited on a 45 steel substrate via cathodic arc sputtering. The influence mechanisms of a magnetic field and the target-substrate distance on the properties of the CrAlN film were analyzed. In addition, the effects of the magnetic field on the film's thickness, surface morphology, binding force, and wear resistance were investigated and compared with those for a film deposited without a magnetic field. The results revealed that the film thickness, surface roughness, droplet size, and number of droplets decreased with an increase in the target-substrate distance. Compared with the sample deposited without a magnetic field, the surface roughness values of the samples deposited with a magnetic field were smaller, the radii of curvature of the films were larger, and the binding forces were better. The interfacial binding force was approximately 60 N with the magnetic field, and it changed little with the target-substrate distance, whereas the binding force changed significantly without a magnetic field. When the two types of samples were subjected to the same conditions, the binding force increased by 20%-80%. The friction coefficient and wear rate of the film decreased with an increase in the target-substrate distance, and the friction coefficient and wear rate of the sample with a magnetic field were smaller at the same target-substrate distance. When a magnetic field was applied and the target-substrate distance was 160-180 mm, the deposited CrAlN film exhibited the best performance. These results provide important references for the preparation of high-performance CrAlN films.
磁场靶基距液滴结合力磨损率
magnetic fieldtarget-substrate distancedropletbinding forcewear rate
董文杰, 张钧, 孙宇菲, 等. CrN系硬质膜的发展与应用[J]. 材料保护, 2019, 52(12): 129-134.
DONG W J, ZHANG J, SUN Y F, et al. Development and application of CrN-based hard films[J]. Materials Protection, 2019, 52(12): 129-134.(in Chinese)
FAN Q X, ZHANG J J, WU Z H, et al. Influence of Al content on the microstructure and properties of the CrAlN coatings deposited by arc ion plating[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1221-1230. doi: 10.1007/s40195-017-0656-6http://dx.doi.org/10.1007/s40195-017-0656-6
VYAS A, ZHOU Z, SHEN Y. Effect of aluminum contents on sputter deposited CrAlN thin films[J]. IOP Conference Series Materials Science and Engineering, 2018, 307(1): 012079. doi: 10.1088/1757-899x/307/1/012079http://dx.doi.org/10.1088/1757-899x/307/1/012079
王建伟, 薛玉君, 蔡海潮, 等. 基体偏压对磁控溅射制备CrAlN薄膜摩擦学性能的影响[J]. 工具技术, 2019, 53(6)51-54. doi: 10.3969/j.issn.1000-7008.2019.06.011http://dx.doi.org/10.3969/j.issn.1000-7008.2019.06.011
WANG J W, XUE Y J, CAI H C, et al. Effect of substrate bias on friction and wear properties of magnetron sputtered CrAlN films[J]. Tool Engineering, 2019, 53(6)51-54(in Chinese). doi: 10.3969/j.issn.1000-7008.2019.06.011http://dx.doi.org/10.3969/j.issn.1000-7008.2019.06.011
姜虎森, 柳琪, 王进, 等. 基材硬度和涂层厚度对AlCrN多元复合纳米硬质涂层硬度的影响[J]. 铸造技术, 2017, 38(10): 2401-2404.
JIANG H S, LIU Q, WANG J, et al. Effect of substrate hardness and coating thickness on the hardness of AlCrN[J]. Foundry Technology, 2017, 38(10): 2401-2404.(in Chinese)
杨光杰. 阴极弧蒸发沉积Al-Cr-O硬质涂层及其结构和性能研究[D]. 广州:广东工业大学,2021.
YANG G J. Study on Structure and Properties of Al-Cr-O Hard Coatings Deposited by Cathodic Arc Evaporation[D]. Guangzhou: Guangdong University of Technology, 2021. (in Chinese)
LIU L Y, LIN S S, WANG W, et al. Effect of electromagnetic voltage on wear resistance of CrAlN coatings[J]. Surface Engineering, 2021, 37(6): 695-701. doi: 10.1080/02670844.2020.1812483http://dx.doi.org/10.1080/02670844.2020.1812483
WANG T C, SHAO T, ZHAO Q, et al. Effect of magnetic field on the thickness uniformity of thin film deposited on inner surface[J]. Surface and Coatings Technology, 2021, 429: 127974. doi: 10.1016/j.surfcoat.2021.127974http://dx.doi.org/10.1016/j.surfcoat.2021.127974
孙国威, 陈泽昊, 李云珂, 等. 靶基距对杂化离子镀TiCN薄膜结构和性能的影响[J]. 真空, 2018, 55(2): 19-22. doi: 10.13385/j.cnki.vacuum.2018.02.05http://dx.doi.org/10.13385/j.cnki.vacuum.2018.02.05
SUN G W, CHEN Z H, LI Y K, et al. Effects of target-substrate distance on structure and properties of TiCN thin films by hybrid ion plating[J]. Vacuum, 2018, 55(2): 19-22.(in Chinese). doi: 10.13385/j.cnki.vacuum.2018.02.05http://dx.doi.org/10.13385/j.cnki.vacuum.2018.02.05
CHEN W, LIN Y, ZHENG J, et al. Preparation and characterization of CrAlN/TiAlSiN nano-multilayers by cathodic vacuum arc[J]. Surface and Coatings Technology, 2015, 265: 205-211. doi: 10.1016/j.surfcoat.2015.01.023http://dx.doi.org/10.1016/j.surfcoat.2015.01.023
MARTIN PJ, BENDAVID A. Review of the filtered vacuum arc process and materials deposition[J]. Thin Solid Films, 2001, 394(1/2): 1-14. doi: 10.1016/s0040-6090(01)01169-5http://dx.doi.org/10.1016/s0040-6090(01)01169-5
BOXMAN R, BEILIS I, GIDALEVICH E, et al. Magnetic control, in vacuum arc deposition: a review[J]. IEEE transactions on plasma science, 2005, 33(5): 1618-1625. doi: 10.1109/tps.2005.856532http://dx.doi.org/10.1109/tps.2005.856532
CHEN SN, ZHANG YF, ZHAO YM, et al. Preparation and regulation of AlCrNiTiSi high entropy alloy coating by a multi-arc magnetic filter cathode vacuum arc system[J]. Surfaces and Interfaces, 2021, 26: 101400. doi: 10.1016/j.surfin.2021.101400http://dx.doi.org/10.1016/j.surfin.2021.101400
MA Y, YANG J, TIAN X, et al. Enhanced Discharge and Surface Properties of TiSiCN Coatings by Pulse-Enhanced Vacuum Arc Evaporation[C]. 15th International Conference on Plasma Based Ion Implantation & Deposition (PBII&D 2019), 2019. doi: 10.1016/j.surfcoat.2020.126413http://dx.doi.org/10.1016/j.surfcoat.2020.126413
SAMUELSSON M, LUNDIN D, JENSEN J, et al. On the film density using high power impulse magnetron sputtering[J]. Surface and Coatings Technology, 2010, 205(2): 591-596. doi: 10.1016/j.surfcoat.2010.07.041http://dx.doi.org/10.1016/j.surfcoat.2010.07.041
郑锦华, 刘青云, 李志雄. 负偏压对含氢类金刚石薄膜性能的影响[J]. 光学 精密工程, 2022, 30(4): 411-420. doi: 10.37188/OPE.20223004.0411http://dx.doi.org/10.37188/OPE.20223004.0411
ZHENG J H, LIU Q Y, LI Z X. Effect of negative bias voltage on properties of hydrogenated diamond-like carbon films[J]. Opt. Precision Eng., 2022, 30(4): 411-420.(in Chinese). doi: 10.37188/OPE.20223004.0411http://dx.doi.org/10.37188/OPE.20223004.0411
郑锦华, 李聪慧, 张冲, 等. 不同金属基材上类金刚石薄膜的摩擦特性[J]. 光学 精密工程, 2013, 21(6): 1545-1552. doi: 10.3788/ope.20132106.1545http://dx.doi.org/10.3788/ope.20132106.1545
ZHENG J H, LI C H, ZHANG C, et al. Friction properties of DLC film on different metal substrates[J]. Opt. Precision Eng., 2013, 21(6): 1545-1552. (in Chinese). doi: 10.3788/ope.20132106.1545http://dx.doi.org/10.3788/ope.20132106.1545
VUCHKOV T, EVARISTO M, YAQUB TB, et al. The effect of substrate location on the composition, microstructure and mechano-tribological properties of W-S-C coatings deposited by magnetron sputtering[J]. Surface and Coatings Technology, 2020, 386: 125481. doi: 10.1016/j.surfcoat.2020.125481http://dx.doi.org/10.1016/j.surfcoat.2020.125481
郑锦华, 晁云峰, 张冲, 等. 射频磁控溅射法沉积SiC-Al薄膜的摩擦特性[J]. 真空科学与技术学报, 2014, 34(11): 1178-1183. doi: 10.13922/j.cnki.cjovst.2014.11.09http://dx.doi.org/10.13922/j.cnki.cjovst.2014.11.09
ZHENG J H, CHAO Y F, ZHANG C, et al. Tribological properties of RF magnetron sputtered SiC-Al coatings[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(11): 1178-1183. (in Chinese). doi: 10.13922/j.cnki.cjovst.2014.11.09http://dx.doi.org/10.13922/j.cnki.cjovst.2014.11.09
郑锦华,张冲,晁云峰,等. 类陨石坑表面类金刚石薄膜的制备及摩擦特性[J]. 光学 精密工程, 2014, 22(4): 934-941. doi: 10.3788/ope.20142204.0934http://dx.doi.org/10.3788/ope.20142204.0934
ZHENG J H, ZHANG CH, CHAO Y F, et al. Deposition and friction properties of DLC films with micro-crater-like structures[J]. Opt. Precision Eng., 2014, 22(4): 934-941. (in Chinese). doi: 10.3788/ope.20142204.0934http://dx.doi.org/10.3788/ope.20142204.0934
王欣, 范其香, 王铁钢, 等. CrAlN纳米复合涂层的组织结构及切削性能研究[J]. 材料保护, 2021, 54(4): 63-68.
WANG X, FAN Q X, WANG T G, et al. The microstructure and cutting property of CrAlN nanocomposite coating[J]. Materials Protection, 2021, 54(4): 63-68. (in Chinese)
汪陇亮, 孙润军, 单磊, 等. CrAlN涂层海水环境腐蚀磨损行为研究[J]. 摩擦学学报, 2017, 37(5): 639-646.
WANG L L, SUN R J, SHAN L, et al. Tribocorrosion behaviors of CrAlN coating in seawater[J]. Tribology, 2017, 37(5): 639-646. (in Chinese)
ZHANG X, TIAN X, GONG C, et al. Effect of plasma nitriding ion current density on tribological properties of composite CrAlN coatings[J]. Ceramics International, 2022, 48(3): 3954-3962. doi: 10.1016/j.ceramint.2021.10.182http://dx.doi.org/10.1016/j.ceramint.2021.10.182
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构