1.桂林电子科技大学 光电工程学院,广西 桂林 541004
2.哈尔滨工程大学 纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001
[ "王 剑(1986-),男,广西桂林人,博士研究生,2010年于广西师范大学获学士学位,2015年于广西师范大学获硕士学位,主要从事光纤加工仪器研制及光纤传感应用方面的研究。E-mail:wangjian_optics@foxmail.com" ]
[ "苑立波(1962-),男,黑龙江哈尔滨人,博士,教授,博士生导师,2003年于香港理工大学获博士学位,主要从事光纤集成器件及光纤传感应用方面的研究。E-mail:lbyuan@vip.sina.com" ]
扫 描 看 全 文
王剑, 马超, 王东辉, 等. 制备高质量螺旋光纤的四电极宽恒温区特性研究[J]. 光学精密工程, 2023,31(18):2636-2646.
WANG Jian, MA Chao, WANG Donghui, et al. Study on the characteristics of four electrode wide constant temperature region for preparing high quality spiral fiber[J]. Optics and Precision Engineering, 2023,31(18):2636-2646.
王剑, 马超, 王东辉, 等. 制备高质量螺旋光纤的四电极宽恒温区特性研究[J]. 光学精密工程, 2023,31(18):2636-2646. DOI: 10.37188/OPE.20233118.2636.
WANG Jian, MA Chao, WANG Donghui, et al. Study on the characteristics of four electrode wide constant temperature region for preparing high quality spiral fiber[J]. Optics and Precision Engineering, 2023,31(18):2636-2646. DOI: 10.37188/OPE.20233118.2636.
为了制备高质量螺旋光纤器件,提出一种四电极电弧光纤加热的方法。基于磁流体动力学模型建立四电极电弧等离子放电的有限元仿真模型,研究了电极夹角、电极距离与施加电压对电弧放电温度场的影响。根据实际情况,进行了相应的温度场仿真计算,结果表明四电极电弧放电形成了较宽的恒温区,宽恒温区不仅有利于光纤应力的释放,同时减少了光纤偏移带来的影响。基于仿真结果,研制了四电极电弧放电的宽恒温区等离子热熔扭转加工系统,当系统中被加热光纤最高温度约为1 050 ℃时,被加热光纤轴向上的恒温区长度约为2.12 mm。用研制的系统制备了不同光纤与不同周期下的螺旋长周期光纤光栅,在波长1.21~1.3 µm,透射光谱的光强波动小于1 dB,光强平均值大于,-,1 dB;在波长1.3~1.35 µm,光强平均值大于,-,1 dB;最深的透射光谱波谷大于22 dB。为更进一步验证所研系统的性能,用单模光纤、偏芯光纤、偏双芯光纤制备了不同周期的螺旋光纤结构,结果显示加工得到的螺旋光纤结构的包层边界清晰且平直,无显著的螺纹结构;光纤中央芯无显著的螺旋加工痕迹;光纤偏芯光滑且连续。
To prepare high-quality helical fiber devices, a heating method for an arc fiber with four electrodes was developed. A finite-element simulation model of arc plasma discharge with four electrodes was established based on the magnetohydrodynamics model. The effects of the electrode angle and distance and applied voltage on the temperature field of arc discharge were studied. A temperature-field simulation diagram was created based on the actual situation, and it indicated that the electrode rod with four electrodes formed a wide constant-temperature region. The wide constant-temperature zone was conducive to the release of fiber stress and reduced the influence of fiber migration. Based on the simulation structure, a plasma hot melt torsional-processing system with a wide constant-temperature zone for arc discharge with four electrodes was developed. When the maximum temperature of the heated fiber in the system was approximately 1 050 ℃, the axial constant-temperature zone length of the heated fiber was approximately 2.12 mm. Finally, helical long-period fiber gratings with different optical fibers and different periods were prepared by using the developed system. The experimental results revealed that when the wavelength of the prepared helical long-period fiber gratings was 1.21~1.3 µm, the intensity fluctuation of the transmission spectrum was less than 1 dB and the average intensity was higher than ,-,1 dB. At wavelengths of 1.3~1.35 µm, the average light intensity was higher than ,-,1 dB. The deepest trough of the transmission spectrum was ,>,22 dB. To further verify the performance of the system, helical fiber structures with different periods were prepared using a single-mode, eccentric core optical, and eccentric twin-core fibers. The results showed that the cladding boundary of the fabricated helical fiber structure was clear and straight and no significant thread structure was present. No distinctive helical machining marks were observed in the central core of the fiber. The off-core of the fiber was smooth and continuous.
四电极电弧等离子宽恒温场高温光纤螺旋加工
four-electrodearcplasma wide constant temperature fieldhigh temperature fiber twisting processing
LIU S, ZHOU M, ZHANG Z, et al. Ultrasensitive refractometer based on helical long-period fiber grating near the dispersion turning point[J]. Optics Letters, 2022, 47(10): 2602-2605. doi: 10.1364/ol.456571http://dx.doi.org/10.1364/ol.456571
ZHANG M W, ZHANG L, CHEN Q, et al. A designed twist sensor based on the SPR effect in the thin-gold-film-coated helical microstructured optical fibers[J]. Sensors. 2022, 22(15): 5668. doi: 10.3390/s22155668http://dx.doi.org/10.3390/s22155668
WANG J B, ZENG X Z, ZHOU J, et al. Highly sensitive torsion sensor based on Mach-Zehnder interference in helical seven-core fiber taper[J]. Chinese Optics Letters, 2023, 21(4): 041205. doi: 10.3788/col202321.041205http://dx.doi.org/10.3788/col202321.041205
NING C, CHENG R W, JIANG Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811-2821. doi: 10.1021/acsnano.1c09792http://dx.doi.org/10.1021/acsnano.1c09792
XUE L L, TIMOTEO B S M, QIU W, et al. Broadband circular polarizer based on chirped double-helix chiral fiber grating[J]. Materials, 2022, 15(9): 3366. doi: 10.3390/ma15093366http://dx.doi.org/10.3390/ma15093366
GAO K Y, ZHANG Z, HUANG B, et al. Broadband edge filter based on a helical long-period fiber grating and its application to a power-interrogated torsion sensor[J]. Journal of the Optical Society of America B, 2022, 39(4): 1075. doi: 10.1364/josab.448578http://dx.doi.org/10.1364/josab.448578
ZHU C L, WANG P, ZHAO H, et al. DC-sampled helical fiber grating and its application to multi-channel OAM generator[J]. IEEE Photonics Technology Letters, 2019, 31(17): 1445-1448. doi: 10.1109/lpt.2019.2931498http://dx.doi.org/10.1109/lpt.2019.2931498
ZHANG L, LIU Y Q, CAO X B, et al. High sensitivity chiral long-period grating sensors written in the twisted fiber[J]. IEEE Sensors Journal, 2016, 16(11): 4253-4257. doi: 10.1109/jsen.2016.2542842http://dx.doi.org/10.1109/jsen.2016.2542842
KONG X D, REN K L, REN L Y, et al. Chiral long-period gratings: fabrication, highly sensitive torsion sensing, and tunable single-band filtering[J]. Applied Optics, 2017, 56(16): 4702-4707. doi: 10.1364/ao.56.004702http://dx.doi.org/10.1364/ao.56.004702
ZHONG J, LIU S, ZOU T, et al. High-sensitivity optical fiber-based glucose sensor using helical intermediate-period fiber grating[J]. Sensors, 2022, 22(18): 6824. doi: 10.3390/s22186824http://dx.doi.org/10.3390/s22186824
LI Z L, LIU S, BAI Z Y, et al. Residual-stress-induced helical long period fiber gratings for sensing applications[J]. Optics Express, 2018, 26(18): 24114. doi: 10.1364/oe.26.024114http://dx.doi.org/10.1364/oe.26.024114
LIU S, ZHOU M, SHAO L P, et al. Torsion-tunable OAM mode generator based on oxyhydrogen-flame fabricated helical long-period fiber grating[J]. Optics Express, 2022, 30(12): 21085. doi: 10.1364/oe.461003http://dx.doi.org/10.1364/oe.461003
SUN B, WEI W, LIAO C R, et al. Automatic arc discharge-induced helical long period fiber gratings and its sensing applications[J]. IEEE Photonics Technology Letters, 2017, 29(11): 873-876. doi: 10.1109/lpt.2017.2693361http://dx.doi.org/10.1109/lpt.2017.2693361
LIU Y, DENG H, YUAN L. Arc-discharge-induced off-axis spiral long period fiber gratings and their sensing characteristics[J]. Optical Fiber Technology, 2019, 52: 101950. doi: 10.1016/j.yofte.2019.101950http://dx.doi.org/10.1016/j.yofte.2019.101950
LIU Y, YUAN LB. Ultrasensitive temperature sensor based on a urethane acrylate-coated off-axis spiral long period fiber grating[J]. Optik, 2020, 223: 165557. doi: 10.1016/j.ijleo.2020.165557http://dx.doi.org/10.1016/j.ijleo.2020.165557
MA C, WANG D H, WANG J, et al. A compact sensor capable of temperature, strain, torsion and curvature measuring[J]. Journal of Lightwave Technology, 2022, 40(14): 4896-4902. doi: 10.1109/jlt.2022.3168844http://dx.doi.org/10.1109/jlt.2022.3168844
HE X L, ZHOU J, MA C, et al. Bend sensor based on Mach-Zehnder interferometer using single-mode fiber with helical structure[J]. IEEE Photonics Technology Letters, 2022, 34(1): 15-18. doi: 10.1109/lpt.2021.3131673http://dx.doi.org/10.1109/lpt.2021.3131673
CHEN J Y, BAI Z Y, ZHU G X, et al. Femtosecond laser inscribed helical long period fiber grating for exciting orbital angular momentum[J]. Optics Express, 2022, 30(3): 4402. doi: 10.1364/oe.449619http://dx.doi.org/10.1364/oe.449619
TACHIKURA M. Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes[J]. Applied Optics, 1984, 23(3): 492. doi: 10.1364/ao.23.000492http://dx.doi.org/10.1364/ao.23.000492
史岩, 陈平, 田浩, 等. 基于Comsol Multiphysics的新型高压直流继电器电弧仿真分析[J]. 北京化工大学学报(自然科学版), 2022, 49(1): 90-97.
SHI Y, CHEN P, TIAN H, et al. Arc simulation analysis of a new high voltage DC relay based on Comsol Multiphysics[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2022, 49(1): 90-97.(in Chinese)
吴翊, 荣命哲, 王小华, 等. 触头打开过程中低压空气电弧等离子体的动态分析[J]. 电工技术学报, 2008, 23(5)12-17. doi: 10.3321/j.issn:1000-6753.2008.05.003http://dx.doi.org/10.3321/j.issn:1000-6753.2008.05.003
WU Y, RONG M Z, WANG X H, et al. Dynamic analysis of low-voltage air arc plasma during contact opening process[J]. Transactions of China Electrotechnical Society, 2008, 23(5)12-17(in Chinese). doi: 10.3321/j.issn:1000-6753.2008.05.003http://dx.doi.org/10.3321/j.issn:1000-6753.2008.05.003
胡新宇, 杨廷方, 汪新秀, 等. 基于MHD的改进型保护间隙快速熄弧仿真[J]. 电力自动化设备, 2022, 42(5): 219-224.
HU X Y, YANG T F, WANG X X, et al. Fast arc extinction simulation for improved protective gap based on MHD[J]. Electric Power Automation Equipment, 2022, 42(5): 219-224.(in Chinese)
宁力. 低串扰弯曲不敏感多芯光纤的研究[D]. 北京: 北京交通大学, 2019.
NING L. Study on Low Crosstalk and Bend Insensitive Multi-Core Fiber[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
HARRIS A, CASTLE P. Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius[J]. Journal of Lightwave Technology, 1986, 4(1): 34-40. doi: 10.1109/jlt.1986.1074626http://dx.doi.org/10.1109/jlt.1986.1074626
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构