1.大连理工大学 高性能精密制造全国重点实验室,辽宁 大连 116000
[ "张 军(1969-),男,吉林长春人,博士,教授,博士生导师,2009 年于大连理工大学获得博士学位,主要从事传感器及执行器相关理论研究。E-mail:zhangj@dlut.edu.cn" ]
[ "甄田甜(1996-),女,黑龙江齐齐哈尔人,硕士研究生,主要从事压电测力仪性能方面研究。E-mail:ztt18941194009@163.com" ]
扫 描 看 全 文
张军, 甄田甜, 蔡佳乐, 等. 不同作用点下压电测力仪灵敏度规律及其预测[J]. 光学精密工程, 2023,31(18):2656-2663.
ZHANG Jun, ZHEN Tiantian, CAI Jiale, et al. Sensitivity laws and prediction of piezoelectric force sensors at different loading points[J]. Optics and Precision Engineering, 2023,31(18):2656-2663.
张军, 甄田甜, 蔡佳乐, 等. 不同作用点下压电测力仪灵敏度规律及其预测[J]. 光学精密工程, 2023,31(18):2656-2663. DOI: 10.37188/OPE.20233118.2656.
ZHANG Jun, ZHEN Tiantian, CAI Jiale, et al. Sensitivity laws and prediction of piezoelectric force sensors at different loading points[J]. Optics and Precision Engineering, 2023,31(18):2656-2663. DOI: 10.37188/OPE.20233118.2656.
为了测量作用位置可变的大量程矢量力,设计了多点支撑式压电测力仪。对不同作用点下测力仪的灵敏度差异性进行分析和预测,以实现精准测量变作用位置的大量程矢量力的目标。对造成测力仪不同测试位置的灵敏度差异的影响因素进行分析,得到测力仪工作面域内不同作用点下的灵敏度与测力单元力电转换系数之间的关系。进行三向变加载点标定实验,获得不同作用点下测力仪的灵敏度实验值。建立LS-SVM预测模型,利用变加载点实验结果对模型进行训练。验证实验表明,该模型预测的不同作用点下的测力仪灵敏度值与真实值的偏差小于3%。采用LS-SVM模型对不同作用点下的多点支撑式压电测力仪灵敏度进行预测具有快速、可靠和高精度的特点,该方法用于定量分析复杂关系量是有效的。
A multi-point supported piezoelectric force sensor was designed to measure a wide range of vector forces with variable application points. More specifically, this study focused on analyzing and predicting sensitivity variations of the force sensor at various application points to ensure precise measurements of vector forces at different loading points. The factors that cause sensitivity variations of the force sensor at different test positions were analyzed, and the relationship between the sensitivity at such points within the working surface of the force sensor and the force-electricity conversion coefficient of the force measuring unit was derived. A least-squares support vector machine (LS-SVM) prediction model was established. Verification experiments showed that this model accurately predicts sensitivity values for the force sensor at different application points, with an error below 3% compared to actual values. The LS-SVM model offers the advantages of speed, reliability, and high precision in predicting sensitivity for multi-point supported piezoelectric force sensors at various application points, indicating its efficacy in quantitatively analyzing complex variable relationships.
压电测力仪灵敏度力电转换LS-SVM模型
piezoelectric dynamometersensitivityelectromechanical conversionLS-SVM model
RIZAL M, GHANI JA, NUAWI MZ, et al. Development and testing of an integrated rotating dynamometer on tool holder for milling process[J]. Mechanical Systems and Signal Processing, 2015, 52/53: 559-576. doi: 10.1016/j.ymssp.2014.07.017http://dx.doi.org/10.1016/j.ymssp.2014.07.017
ZHAO Y Z, ZHANG C F, ZHANG D, et al. Mathematical model and calibration experiment of a large measurement range flexible joints 6-UPUR six-axis force sensor[J]. Sensors, 2016, 16(8): 1271. doi: 10.3390/s16081271http://dx.doi.org/10.3390/s16081271
张军, 胡沛锴, 马奕萱, 等. 压电式力传感器三向分载研究[J]. 仪表技术与传感器, 2022,(11): 123-126. doi: 10.3969/j.issn.1002-1841.2022.11.023http://dx.doi.org/10.3969/j.issn.1002-1841.2022.11.023
ZHANG J, HU P K, MA Y X, et al. Research on three-direction load distribution of piezoelectric force sensors[J]. Instrument Technique and Sensor, 2022,(11): 123-126.(in Chinese). doi: 10.3969/j.issn.1002-1841.2022.11.023http://dx.doi.org/10.3969/j.issn.1002-1841.2022.11.023
KOUSSOU A, DUMAS R, DESAILLY E. Importance of 3D handheld dynamometer’s kinematics in estimation of passive joint moments[J]. Gait & Posture, 2022, 97: S28-S29. doi: 10.1016/j.gaitpost.2022.07.027http://dx.doi.org/10.1016/j.gaitpost.2022.07.027
GEORGEL R, GRYGORYEV K, SORENSEN S, et al. Silicon photomultiplier-a high dynamic range, high sensitivity sensor for bio-photonics applications[J]. Biosensors, 2022, 12(10): 793. doi: 10.3390/bios12100793http://dx.doi.org/10.3390/bios12100793
彭时秋,朱赛宁.MEMS微压压力传感器的灵敏度优化[J].光学 精密工程,2022,30(13):1582-1590. doi: 10.37188/OPE.20223013.1582http://dx.doi.org/10.37188/OPE.20223013.1582
PENG S Q, ZHU S N. Optimization of sensitivity of MEMS micro-pressure sensor[J]. Opt. Precision Eng., 2022, 30(13): 1582-1590. (in Chinese). doi: 10.37188/OPE.20223013.1582http://dx.doi.org/10.37188/OPE.20223013.1582
汪思奇, 汪忠睿, 吴志坚, 等. 压电薄膜振动传感器灵敏度与频响标定研究[J]. 压电与声光, 2022, 44(6): 925-928. doi: 10.11977/j.issn.1004-2474.2022.06.019http://dx.doi.org/10.11977/j.issn.1004-2474.2022.06.019
WANG S Q, WANG Z R, WU Z J, et al. Study on calibration of sensitivity and frequency response characteristics of piezoelectric thin film vibration sensor[J]. Piezoelectrics & Acoustooptics, 2022, 44(6): 925-928. (in Chinese). doi: 10.11977/j.issn.1004-2474.2022.06.019http://dx.doi.org/10.11977/j.issn.1004-2474.2022.06.019
刘俊,徐军领,李 敏.垫圈式压电六维力传感器静态灵敏度解析[J].光学 精密工程,2019,27(04):901-910. doi: 10.3788/ope.20192704.0901http://dx.doi.org/10.3788/ope.20192704.0901
LIU J, XU J L, LI M, et al. Static sensitivity analysis of washer-type piezoelectric six-axis force sensor[J]. Opt. Precision Eng., 2019, 27(4): 901-910. (in Chinese). doi: 10.3788/ope.20192704.0901http://dx.doi.org/10.3788/ope.20192704.0901
张军,马奕萱, 任宗金, 等. 四支点压电测力仪输出稳定性提高方法研究[J]. 仪表技术与传感器, 2022(5): 24-27, 31. doi: 10.3969/j.issn.1002-1841.2022.05.006http://dx.doi.org/10.3969/j.issn.1002-1841.2022.05.006
LI K, CHENG G Y, SUN X D, et al. A nonlinear flux linkage model for bearingless induction motor based on GWO-LSSVM[J]. IEEE Access, 2019, 7: 36558-36567. doi: 10.1109/access.2019.2905247http://dx.doi.org/10.1109/access.2019.2905247
王尊豪. 新型压电三向车削测力仪的研制[D]. 大连: 大连理工大学, 2022.
WANG Z H. Development of a Novel Piezoelectric Three-Dimensional Turning Dynamometer[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
SRIDHAR P, ARIVAN S D, AKSHAY R, et al. Anomaly Detection Using CNN with SVM[C]. 2022 8th International Conference on Smart Structures and Systems (ICSSS). 21-22, 2022, Chennai, India. IEEE, 2022: 1-4. doi: 10.1109/icsss54381.2022.9782229http://dx.doi.org/10.1109/icsss54381.2022.9782229
邹永宁, 张智斌, 李琦, 等. 基于Hessian矩阵和支持向量机的CT图像裂纹分割[J]. 光学 精密工程, 2021, 29(10): 2517-2527. doi: 10.37188/OPE.2021.0349http://dx.doi.org/10.37188/OPE.2021.0349
ZOU Y N, ZHANG Z B, LI Q, et al. Crack detection and segmentation in CT images using Hessian matrix and support vector machine[J]. Opt. Precision Eng., 2021, 29(10): 2517-2527. (in Chinese). doi: 10.37188/OPE.2021.0349http://dx.doi.org/10.37188/OPE.2021.0349
PANG X Y, ZHAO J, XU Y T. A novel ramp loss-based multi-task twin support vector machine with multi-parameter safe acceleration[J]. Neural Networks, 2022, 150: 194-212. doi: 10.1016/j.neunet.2022.03.006http://dx.doi.org/10.1016/j.neunet.2022.03.006
ZHANG M, WANG J Y, XIONG X, et al. The strain distribution reconstructions using GWO algorithm and verification by FBG experimental data[J]. Applied Sciences, 2023, 13(3): 1259. doi: 10.3390/app13031259http://dx.doi.org/10.3390/app13031259
孙国栋, 周振, 王俊豪, 等. 基于稀疏编码空间金字塔匹配和GA-SVM的列车故障自动识别[J]. 光学 精密工程, 2018, 26(12): 3087-3098. doi: 10.3788/ope.20182612.3087http://dx.doi.org/10.3788/ope.20182612.3087
SUN G D, ZHOU Z, WANG J H, et al. Automatic fault recognition algorithm for key parts of train based on sparse coding based spatial pyramid matching and GA-SVM[J]. Opt. Precision Eng., 2018, 26(12): 3087-3098.(in Chinese). doi: 10.3788/ope.20182612.3087http://dx.doi.org/10.3788/ope.20182612.3087
ALI A M, NGADI M A, SHAM R, et al. Enhanced QoS routing protocol for an unmanned ground vehicle, based on the ACO approach[J]. Sensors, 2023, 23(3): 1431. doi: 10.3390/s23031431http://dx.doi.org/10.3390/s23031431
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构