1.上海工程技术大学 机械与汽车工程学院,上海 松江 201620
2.格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆 GL50 2RH
3.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
4.上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海 200240
[ "陈云壮(1999-),男,山东聊城人,2017年于山东农业大学获得本科学位,现为上海工程技术大学机械与汽车工程学院研究生,主要从事微纳米定位技术方面的研究。E-mail: M310121248@sues.edu.cn" ]
[ "赖磊捷(1984-),男,浙江宁波人,博士,副教授,2014年于上海交通大学获得博士学位,现为上海工程技术大学机械与汽车工程学院副教授,主要从事微位移驱动控制、微纳制造装备等领域的研究。E-mail: lailj@sues.edu.cn" ]
扫 描 看 全 文
陈云壮, 赖磊捷, 李朋志, 等. 全簧片式空间大行程并联柔性微定位平台及其轨迹控制[J]. 光学精密工程, 2023,31(18):2675-2686.
CHEN Yunzhuang, LAI Leijie, LI Pengzhi, et al. Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control[J]. Optics and Precision Engineering, 2023,31(18):2675-2686.
陈云壮, 赖磊捷, 李朋志, 等. 全簧片式空间大行程并联柔性微定位平台及其轨迹控制[J]. 光学精密工程, 2023,31(18):2675-2686. DOI: 10.37188/OPE.20233118.2675.
CHEN Yunzhuang, LAI Leijie, LI Pengzhi, et al. Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control[J]. Optics and Precision Engineering, 2023,31(18):2675-2686. DOI: 10.37188/OPE.20233118.2675.
为了解决传统微定位平台运动范围小、寄生运动和交叉轴耦合严重导致运动精度低等问题,提出了一种音圈电机驱动的全簧片式大行程、空间多自由度并联柔性解耦微定位平台。首先,介绍了含簧片型柔性球铰的大行程多自由度并联柔性机构的结构和变形原理。接着,以空间三自由度为例,推导了动平台的运动学方程,建立了机构的输入刚度模型,并基于柔度矩阵法对柔性球铰进行了柔度建模和设计,从而确定了微定位平台的参数。此外,分别对三自由度方向进行了系统动力学模型辨识,并基于模型设计了一种相位超前PI反馈控制结合滑模前馈控制的复合控制器。最后,搭建了平台实验系统来验证其轨迹跟踪性能。实验结果表明:与经典的PID控制相比,该复合控制方法能够使得轨迹跟踪性能提高95%以上,加入的滑模前馈也能够有效消除单纯反馈控制产生的相位滞后。并且,所提出的多自由度微定位平台能够实现±3.23 mm×±21.50 mrad×±20.30 mrad的运动范围,具有行程大、稳定性好和精度高等特点,可以用于许多需要大行程高精度的空间定位场合。
To address the drawbacks of the traditional micropositioning stage, such as the small range of motion, low motion accuracy caused by parasitic motion, and serious cross-axis coupling, this paper proposes a full leaf-spring parallel flexure decoupling micropositioning stage driven by a voice coil motor with large-stroke and multiple degrees of freedom (multi-DOF). First, the structure and deformation principle of the long-stroke multi-DOF parallel flexure mechanism with a leaf-spring type flexure spherical joint are introduced. Second, considering 3-DOF as an example, the kinematic equation of the moving platform is derived, the input stiffness model of the mechanism is established, and the compliance modeling and design of the flexure spherical joint are provided based on the compliance matrix method to determine the parameters of the micropositioning stage. Additionally, the models of the system dynamics are identified for 3-DOF. On the basis of the models, a composite controller of phase advanced proportional-integral (PI) feedback control combined with sliding mode feedforward control is designed. Finally, a stage experimental system is developed to verify its trajectory tracking performance. Experimental results indicate that, compared with the classical proportional-integral-derivative (PID) control, the compound control method can improve the track tracking performance by more than 95% and that the added sliding mode feedforward effectively eliminates the phase lag caused by simple feedback control. Meanwhile, the proposed multi-DOF micropositioning stage can achieve a motion with ±3.23 mm×±21.50 mrad×±20.30 mrad. It has the characteristics of large stroke, good stability, and high accuracy, which are applicable in many spatial positioning situations that require large travel and high accuracy.
并联柔性机构音圈电机大行程簧片型柔性球铰相位超前PI控制滑模控制
parallel flexure mechanismvoice coil motorlarge strokeleaf-spring type flexure spherical jointphase advanced PI controllersliding mode controller
TEO T J, YANG G, CHEN I M. A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: part I. Modeling and analyses[J]. Precision Engineering, 2014, 38(4): 861-871. doi: 10.1016/j.precisioneng.2014.04.012http://dx.doi.org/10.1016/j.precisioneng.2014.04.012
ZAREINEJAD M, REZAEI S M, ABDULLAH A, et al. Development of a piezo-actuated micro-teleoperation system for cell manipulation[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2009, 5(1): 66-76. doi: 10.1002/rcs.236http://dx.doi.org/10.1002/rcs.236
XIAO R, XU M, SHAO S, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing, 2019, 126: 211-226. doi: 10.1016/j.ymssp.2019.02.028http://dx.doi.org/10.1016/j.ymssp.2019.02.028
WANG Y. Design and control of an ultraprecision stage used in grating tiling[J]. Chinese Journal of Mechanical Engineering (English Edition), 2007, 20(1): 1. doi: 10.3901/cjme.2007.01.001http://dx.doi.org/10.3901/cjme.2007.01.001
YE W, LI Q C. Type synthesis of lower mobility parallel mechanisms: a review[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1-11. doi: 10.1186/s10033-019-0350-xhttp://dx.doi.org/10.1186/s10033-019-0350-x
于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68. doi: 10.3901/jme.2015.13.053http://dx.doi.org/10.3901/jme.2015.13.053
YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68.(in Chinese). doi: 10.3901/jme.2015.13.053http://dx.doi.org/10.3901/jme.2015.13.053
LIU Y X, DENG J, SU Q. Review on multi-degree-of-freedom piezoelectric motion stage[J]. IEEE Access, 2018, 6: 59986-60004. doi: 10.1109/access.2018.2875940http://dx.doi.org/10.1109/access.2018.2875940
LI H, TANG H, LI J, et al. Design, fabrication, and testing of a 3-DOF piezo fast tool servo for microstructure machining[J]. Precision Engineering, 2021, 72: 756-768. doi: 10.1016/j.precisioneng.2021.07.015http://dx.doi.org/10.1016/j.precisioneng.2021.07.015
ZHAO Y, YUE H, YANG F, et al. A high thrust density voice coil actuator with a new structure of double magnetic circuits for CubeSat deployers[J]. IEEE Transactions on Industrial Electronics, 2022, 69: 13305-13315. doi: 10.1109/tie.2021.3134060http://dx.doi.org/10.1109/tie.2021.3134060
AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. Development and control of a large range XYΘ micropositioning stage[J]. Mechatronics, 2020, 66: 102343. doi: 10.1016/j.mechatronics.2020.102343http://dx.doi.org/10.1016/j.mechatronics.2020.102343
ZHANG X, XU Q. Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 54: 162-172. doi: 10.1016/j.rcim.2017.11.006http://dx.doi.org/10.1016/j.rcim.2017.11.006
AWTAR S, QUINT J, USTICK J. Experimental characterization of a large-range parallel kinematic XYZ flexure mechanism[J]. Journal of Mechanisms and Robotics, 2021, 13(1): 015001. doi: 10.1115/1.4048259http://dx.doi.org/10.1115/1.4048259
徐洪业, 李杨民, 李祥春. 空间3-DOF柔性并联微动平台运动学分析[J]. 制造业自动化, 2018, 40(3):23-26. doi: 10.3969/j.issn.1009-0134.2018.03.007http://dx.doi.org/10.3969/j.issn.1009-0134.2018.03.007
XU H Y, LI Y M, LI X C. Kinematics analysis of space 3-DOF flexicle parallel micro-manipulator platform[J]. Manufacturing Automation, 2018, 40(3):23-26.(in Chinese). doi: 10.3969/j.issn.1009-0134.2018.03.007http://dx.doi.org/10.3969/j.issn.1009-0134.2018.03.007
WANG R Z, WU H. Design and performance of a spatial 6-RRRR compliant parallel nanopositioning stage[J]. Micromachines, 2022, 13(11): 1889. doi: 10.3390/mi13111889http://dx.doi.org/10.3390/mi13111889
YANG B, ZHANG C, YU H T, et al. Design and Analysis of a 3-DOF Planar Flexure-Based Parallel Mechanism with Large Motion Range[C]. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).12-15, 2018, Kuala Lumpur, Malaysia. IEEE, 2019: 1888-1893. doi: 10.1109/robio.2018.8665353http://dx.doi.org/10.1109/robio.2018.8665353
KANG S, LEE M G, CHOI Y M. Six degrees-of-freedom direct-driven nanopositioning stage using crab-leg flexures[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 513-525. doi: 10.1109/tmech.2020.2972301http://dx.doi.org/10.1109/tmech.2020.2972301
YANG Z, LEE R, HOPKINS JB. Hexblade positioner: a fast large-range six-axis motion stage[J]. Precision Engineering, 2022, 76: 199-207. doi: 10.1016/j.precisioneng.2022.03.018http://dx.doi.org/10.1016/j.precisioneng.2022.03.018
蒋毅, 朱煜, 杨开明, 等. 超精密六自由度微动台耦合动力学建模及分析[J]. 中国电机工程学报, 2014, 34(30): 5451-5457. doi: 10.13334/j.0258-8013.pcsee.2014.30.024http://dx.doi.org/10.13334/j.0258-8013.pcsee.2014.30.024
JIANG Y, ZHU Y, YANG K M, et al. Coupled dynamic modeling and analysis of ultra-precision 6-DOF fine stage[J]. Proceedings of the CSEE, 2014, 34(30): 5451-5457.(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2014.30.024http://dx.doi.org/10.13334/j.0258-8013.pcsee.2014.30.024
于阳, 王学问, 徐振邦, 等. 基于柔性铰链的大口径望远镜并联调整机构[J]. 光学 精密工程, 2023, 31(3):352-362. doi: 10.37188/OPE.20233103.0352http://dx.doi.org/10.37188/OPE.20233103.0352
YU Y, WANG X W, XU Z B, et al. Parallel adjustment mechanism for large aperture telescope based on flexible hinges[J]. Opt. Precision Eng., 2023, 31(3):352-362.(in Chinese). doi: 10.37188/OPE.20233103.0352http://dx.doi.org/10.37188/OPE.20233103.0352
徐骁. 三自由度纳米定位平台设计与控制[D]. 上海: 上海交通大学, 2016.
XU X. Design and Control of 3-DOF Nanopositioning Stage[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. Modeling and a cross-coupling compensation control methodology of a large range 3-DOF micropositioner with low parasitic motions[J]. Mechanism and Machine Theory, 2021, 162: 104334. doi: 10.1016/j.mechmachtheory.2021.104334http://dx.doi.org/10.1016/j.mechmachtheory.2021.104334
张旭, 赖磊捷, 李朋志, 等. 电磁驱动柔顺微定位平台闭环频域逆迭代学习控制[J]. 光学 精密工程, 2021, 29(9): 2149-2157. doi: 10.37188/OPE.20212909.2149http://dx.doi.org/10.37188/OPE.20212909.2149
ZHANG X, LAI L J, LI P Z, et al. Closed-loop inverse iterative learning control in frequency-domain for electromagnetic driven compliant micro-positioning platform[J]. Opt. Precision Eng., 2021, 29(9): 2149-2157.(in Chinese). doi: 10.37188/OPE.20212909.2149http://dx.doi.org/10.37188/OPE.20212909.2149
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构