1.武汉理工大学 汽车工程学院,湖北 武汉 430070
2.中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
[ "刘宁博(2001-),男,河南项城人,主要从事燃烧激光吸收光谱诊断和高温传感器研发方面的研究。E-mail: liu313555@whut.edu.cn" ]
[ "马柳昊(1990-),男,湖北荆州人,博士,副研究员,硕士生导师,2012年、2015年于华中科技大学分别获得学士和硕士学位,2019年于香港中文大学获得博士学位,主要研究方向为大载荷、强辐射、非均匀燃烧流场光学诊断技术,新型激光光谱高温传感技术和工业激光传感器与激光雷达设计。E-mail: liuhaoma@whut.edu.cn" ]
扫 描 看 全 文
刘宁博, 赵逸佳, 陆盛曜, 等. 热化学参数非均匀分布对双色激光吸收光谱测量碳烟火焰温度的影响[J]. 光学精密工程, 2023,31(19):2799-2808.
LIU Ningbo, ZHAO Yijia, LU Shengyao, et al. Influence of non-uniform distributions of thermochemical parameters on measurement of sooting flame temperature by two-color laser absorption spectroscopy[J]. Optics and Precision Engineering, 2023,31(19):2799-2808.
刘宁博, 赵逸佳, 陆盛曜, 等. 热化学参数非均匀分布对双色激光吸收光谱测量碳烟火焰温度的影响[J]. 光学精密工程, 2023,31(19):2799-2808. DOI: 10.37188/OPE.20233119.2799.
LIU Ningbo, ZHAO Yijia, LU Shengyao, et al. Influence of non-uniform distributions of thermochemical parameters on measurement of sooting flame temperature by two-color laser absorption spectroscopy[J]. Optics and Precision Engineering, 2023,31(19):2799-2808. DOI: 10.37188/OPE.20233119.2799.
针对视线效应(Line-Of-Sight,LOS)的双色激光吸收光谱(Laser Absorption Spectroscopy,LAS)火焰测温技术,研究了热化学参数的非均匀分布对碳烟火焰温度测量的影响。优先选出水汽(H,2,O)在1.3~3.0 μm内的6对典型吸收谱线,针对氮气伴流碳烟火焰和空气伴流碳烟火焰,利用高保真光谱数值模拟仿真系统研究了非均匀温度和浓度分布对所选6对谱线的测温结果的影响,得到了氮气伴流碳烟火焰和空气伴流碳烟火焰的非均匀性条件。对于氮气伴流碳烟火焰,仿真得到的谱线对4 029.52 cm,-,1,/4 030.73 cm,-,1,和5 553.86 cm,-,1,/5 554.18 cm,-,1,的最大相对温度偏差分别是4.72%(最小)和12.40%(最大)。空气伴流碳烟火焰的谱线对相对温度偏差有正有负,且其最大正负值均出现在,δ,/,L,=80%的非均匀条件下,谱线对5 553.86 cm,-,1,/5 554.18 cm,-,1,相对温差的最大正负值分别为14.43%和,-,2.51%;谱线对4 029.52 cm,-,1,/4 030.73 cm,-,1,相对温差的最大正负值分别为3.22%和,-,13.21%。最后,通过典型谱线对4 029.52 cm,-,1,/4 030.73 cm,-,1,的吸收光谱进行了实验验证。实验结果表明:在两种典型碳烟火焰中,谱线对4 029.52 cm,-,1,/4 030.73 cm,-,1,对热化学参数的非均匀性不敏感,可以最大程度上减弱热化学参数非均匀分布对其测温结果的影响。
The influence of non-uniform distributions of thermochemical parameters on the sooting flame measurements was comprehensively studied via the line-of-sight (LOS) dual-color laser absorption spectroscopy (LAS) in flame thermometry. Six representative absorption line pairs of water vapor (H,2,O) within the wavelength range of 1.3-3.0 μm were selected as optimal for the investigations. High-fidelity spectral simulations were performed to investigate the influence of the non-uniform temperature and concentration distributions on sooting flames with nitrogen and air co-flows. The non-uniformity conditions for sooting flames with nitrogen co-flow and sooting flames with air co-flow were abtained. For sooting flames with nitrogen co-flow, the maximum temperature deviations of the spectral line pairs (4 029.52 cm,-,1,/4 030.73 cm,-,1, and 5 553.86 cm,-,1,/5 554.18 cm,-,1,) were observed to be the smallest (i.e., 4.72%) and largest (i.e., 12.40%), respectively. For sooting flames with air co-flow, the temperature deviations exhibited positive and negative values, with the maximum positive and negative values observed under the non-uniformity condition of ,δ,/,L,=80%. In particular, the maximum positive and negative temperature deviations were 14.43% and ,-,2.51% for the line pair 5 553.86 cm,-,1,/5 554.18 cm,-,1,, and 3.22% and ,-,13.21% for the spectral line pair 4 029.52 cm,-,1,/4 030.73 cm,-,1,. The numerical simulation results were subsequently compared with experimental measurements using the line pair near 4 029.52 cm,-,1,/4 030.73 cm,-,1,. The experimental results indicated that, in two typical sooting flames, the line pair 4 029.52 cm,-,1,/4 030.73 cm,-,1, can effectively mitigate the influence of non-uniform distributions of thermochemical parameters on the temperature measurement.
激光吸收光谱技术热化学参数非均匀分布碳烟火焰温度测量
laser absorption spectroscopynon-uniform distribution of thermochemical parameterssooting flametemperature measurement
吴军, 宋丰成, 潘智祥, 等. 采用干涉条纹纹影法的轴对称温度场测量[J]. 光学 精密工程, 2023, 31(2):150-159. doi: 10.37188/OPE.20233102.0150http://dx.doi.org/10.37188/OPE.20233102.0150
WU J, SONG F CH, PAN ZH X, et al. Measurement of axisymmetric temperature field by interference fringe Schlieren method[J]. Opt. Precision Eng., 2023, 31(2):150-159.(in Chinese). doi: 10.37188/OPE.20233102.0150http://dx.doi.org/10.37188/OPE.20233102.0150
洪延姬, 宋俊玲, 王广宇, 等. 激光吸收光谱技术测量非均匀燃烧流场研究进展[J]. 航空学报, 2015, 36(3):724-736. doi: 10.7527/S1000-6893.2014.0173http://dx.doi.org/10.7527/S1000-6893.2014.0173
HONG Y J, SONG J L, WANG G Y, et al. Review on the research of non-uniform combustion field measurement using laser absorption spectroscopy technique[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):724-736.(in Chinese). doi: 10.7527/S1000-6893.2014.0173http://dx.doi.org/10.7527/S1000-6893.2014.0173
彭于权,阚瑞峰,许振宇,等. 基于可调谐半导体激光吸收光谱技术的甲烷/空气预混平焰炉温度测量[J].大气与环境光学学报,2019,14(3): 229-234.
PENG Y Q, KAN R F,XU ZH Y, et al. Temperature measurement of CH4/Air premixed flat flame burner based on tunable diode laser absorption spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(3): 228-234. (in Chinese)
洪延姬. 燃烧场吸收光谱诊断技术研究进展[J]. 实验流体力学, 2014, 28(3): 12-25. doi: 10.11729/syltlx2014ty02http://dx.doi.org/10.11729/syltlx2014ty02
HONG Y J. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 12-25.(in Chinese). doi: 10.11729/syltlx2014ty02http://dx.doi.org/10.11729/syltlx2014ty02
聂伟,许振宇,阚瑞峰,等. 可调谐二极管激光吸收光谱技术测量低温流场水汽露点温度[J].光学 精密工程,2018,26(8):1862-1869. doi: 10.3788/ope.20182608.1862http://dx.doi.org/10.3788/ope.20182608.1862
NIE W, XU ZH Y, KAN R F, et al. Measurement of low water vapor dew-point temperature based on tunable diode laser absorption spectroscopy [J]. Opt. Precision Eng., 2018, 26(8): 1862-1869. (in Chinese). doi: 10.3788/ope.20182608.1862http://dx.doi.org/10.3788/ope.20182608.1862
曹章, 高欣, 陆方皞, 等. 激光吸收光谱层析成像及复杂燃烧场动态监测[J]. 中国激光, 2022, 49(19): 1904002. doi: 10.3788/CJL202249.1904002http://dx.doi.org/10.3788/CJL202249.1904002
CAO ZH, GAO X, LU F H, et al. Laser absorption spectral tomography for dynamical combustion monitoring[J]. Chinese Journal of Lasers, 2022, 49(19): 1904002.(in Chinese). doi: 10.3788/CJL202249.1904002http://dx.doi.org/10.3788/CJL202249.1904002
李明星, 陈兵, 阮俊, 等. 近海大尺度区域二氧化碳的激光在线探测技术[J]. 光学 精密工程, 2020, 28(7):1424-1432. doi: 10.37188/OPE.20202807.1424http://dx.doi.org/10.37188/OPE.20202807.1424
LI M X, CHEN B, RUAN J, et al. On-line detection of carbon dioxide in large scale offshore by laser technology[J]. Opt. Precision Eng., 2020, 28(7):1424-1432.(in Chinese). doi: 10.37188/OPE.20202807.1424http://dx.doi.org/10.37188/OPE.20202807.1424
聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光, 2018, 45(9): 0911001. doi: 10.3788/cjl201845.0911001http://dx.doi.org/10.3788/cjl201845.0911001
NIE W, KAN R F, YANG CH G, et al. Application and research progress of tunable diode laser absorption spectroscopy technology[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001.(in Chinese). doi: 10.3788/cjl201845.0911001http://dx.doi.org/10.3788/cjl201845.0911001
许超, 王辽, 钟晨光, 等. 吸收光谱法冲压发动机隔离段来流质量的流量测量[J]. 光学 精密工程, 2018, 26(8):1888-1895. doi: 10.3788/ope.20182608.1888http://dx.doi.org/10.3788/ope.20182608.1888
XU CH, WANG L, ZHONG CH G, et al. Measurement of flow flux for scramjet isolator inflow based on absorption spectroscopy[J]. Opt. Precision Eng., 2018, 26(8):1888-1895.(in Chinese). doi: 10.3788/ope.20182608.1888http://dx.doi.org/10.3788/ope.20182608.1888
李金义,赵航,杨晓涛,等. 激光吸收光谱2D和3D成像测量技术及其应用研究进展[J].激光与光电子学进展,2022,59(19): 1900005. doi: 10.3788/LOP202259.1900005http://dx.doi.org/10.3788/LOP202259.1900005
LI J Y, ZHAO H, YANG X T, et al. Research and application progress on laser absorption spectroscopy technology for 2D and 3D imaging measurement [J]. Progress in Laser and Optoelectronics, 2022, 59(19): 1900005. (in Chinese). doi: 10.3788/LOP202259.1900005http://dx.doi.org/10.3788/LOP202259.1900005
潘云, 李颐, 颜昌翔. TDLAS一氧化碳浓度检测系统误差分配[J]. 光学 精密工程, 2021, 29(7): 1539-1548. doi: 10.37188/OPE.20212907.1539http://dx.doi.org/10.37188/OPE.20212907.1539
PAN Y, LI Y, YAN CH X. Error distribution for TDLAS carbon monoxide concentration measurement system[J]. Opt. Precision Eng., 2021, 29(7): 1539-1548.(in Chinese). doi: 10.37188/OPE.20212907.1539http://dx.doi.org/10.37188/OPE.20212907.1539
许振宇, 刘文清, 刘建国, 等. 基于可调谐半导体激光器吸收光谱的温度测量方法研究[J]. 物理学报, 2012, 61(23): 232-239. doi: 10.7498/aps.61.234204http://dx.doi.org/10.7498/aps.61.234204
XU ZH Y, LIU W Q, LIU J G, et al. Temperature measurements based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(23): 232-239.(in Chinese). doi: 10.7498/aps.61.234204http://dx.doi.org/10.7498/aps.61.234204
贾良权, 祁亨年, 胡文军, 等. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程, 2019, 27(6):1397-1404. doi: 10.3788/ope.20192706.1397http://dx.doi.org/10.3788/ope.20192706.1397
JIA L Q, QI H N, HU W J, et al. CO2 concentration detection system for seed respiration[J]. Opt. Precision Eng., 2019, 27(6):1397-1404.(in Chinese). doi: 10.3788/ope.20192706.1397http://dx.doi.org/10.3788/ope.20192706.1397
袁峰, 高晶, 姚路, 等. 球载CRDS高灵敏度甲烷测量系统的研制[J]. 光学 精密工程, 2020, 28(9): 1881-1892. doi: 10.37188/OPE.20202809.1881http://dx.doi.org/10.37188/OPE.20202809.1881
YUAN F, GAO J, YAO L, et al. Development of highly sensitive balloon-borne methane measurement system based on cavity ringdown spectroscopy[J]. Opt. Precision Eng., 2020, 28(9): 1881-1892.(in Chinese). doi: 10.37188/OPE.20202809.1881http://dx.doi.org/10.37188/OPE.20202809.1881
GOLDENSTEIN C S, SCHULTZ I A, JEFFRIES J B, et al. Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases[J]. Applied Optics, 2013, 52(33): 7950. doi: 10.1364/ao.52.007950http://dx.doi.org/10.1364/ao.52.007950
SEPMAN A, ÖGREN Y, QU ZH CH, et al. Real-time in situ multi-parameter TDLAS sensing in the reactor core of an entrained-flow biomass gasifier[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4541-4548. doi: 10.1016/j.proci.2016.07.011http://dx.doi.org/10.1016/j.proci.2016.07.011
MA L H, CHEONG K P, YANG M, et al. On the quantification of boundary layer effects on flame temperature measurements using line-of-sight absorption spectroscopy[J]. Combustion Science and Technology, 2022, 194(16): 3259-3276. doi: 10.1080/00102202.2021.1925657http://dx.doi.org/10.1080/00102202.2021.1925657
WEN D X, MA L H, WANG Y. Effects of thermochemical non-uniformity on line-of-sight laser absorption thermometry in counterflow diffusion flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107990. doi: 10.1016/j.jqsrt.2021.107990http://dx.doi.org/10.1016/j.jqsrt.2021.107990
HANSON R K, SPEARRIN R M, GOLDENSTEIN C S. Spectroscopy and Optical Diagnostics for Gases[M]. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-23252-2http://dx.doi.org/10.1007/978-3-319-23252-2
MA L H, DUAN K, CHEONG K P, et al. Multispectral infrared absorption spectroscopy for quantitative temperature measurements in axisymmetric laminar premixed sooting flames[J]. Case Studies in Thermal Engineering, 2021, 28: 101575. doi: 10.1016/j.csite.2021.101575http://dx.doi.org/10.1016/j.csite.2021.101575
OLOFSSON N E, BLADH H, BOHLIN A, et al. Are sooting premixed porous-plug burner flames one-dimensional? A laser-based experimental investigation[J]. Combustion Science and Technology, 2013, 185(2): 293-309. doi: 10.1080/00102202.2012.718006http://dx.doi.org/10.1080/00102202.2012.718006
GORDON I E, ROTHMAN L S, HARGREAVES R J, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277: 107949.
WU Q, WANG F, LI M Y, et al. Simultaneous In-situ measurement of soot volume fraction, H2O concentration, and temperature in an ethylene/air premixed flame using tunable diode laser absorption spectroscopy[J]. Combustion Science and Technology, 2017, 189(9): 1571-1590. doi: 10.1080/00102202.2017.1308358http://dx.doi.org/10.1080/00102202.2017.1308358
MCENALLY CS, KÖYLÜ ÜÖ, PFEFFERLE LD, et al. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples[J]. Combustion and Flame, 1997, 109(4): 701-720. doi: 10.1016/s0010-2180(97)00054-0http://dx.doi.org/10.1016/s0010-2180(97)00054-0
MA L H, NING H B, WU J J, et al. In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry [J]. Combustion Science and Technology, 2018, 190(3): 393-408. doi: 10.1080/00102202.2017.1392515http://dx.doi.org/10.1080/00102202.2017.1392515
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构