1.中国科学院合肥物质科学研究院 安徽光学精密机械研究所,安徽 合肥 230031
2.中国科学技术大学,安徽 合肥 230026
3.香港中文大学 机械和自动化工程系,香港 999077
[ "刘 英(1998-),女,四川宜宾人,博士研究生,2018年于安徽大学获得学士学位,主要从事激光吸收光谱方面的研究。E-mail: yliu@aiofm.ac.cn" ]
[ "阚瑞峰(1977-),男,辽宁锦州人,博士,研究员,2000年于长春理工大学获得学士学位;2003年、2006年于中国科学院安徽光机所分别获得硕士与博士学位,主要从事光学与光谱学方面的研究。E-mail:kanruifeng@aiofm.ac.cn" ]
扫 描 看 全 文
刘英,胡迈,王兴平等.Ppb级探测灵敏度的CO2腔衰荡光谱仪[J].光学精密工程,2023,31(20):2921-2929.
LIU Ying,HU Mai,WANG Xingping,et al.Cavity ring-down spectrometer of CO2 with ppb detection sensitivity[J].Optics and Precision Engineering,2023,31(20):2921-2929.
刘英,胡迈,王兴平等.Ppb级探测灵敏度的CO2腔衰荡光谱仪[J].光学精密工程,2023,31(20):2921-2929. DOI: 10.37188/OPE.20233120.2921.
LIU Ying,HU Mai,WANG Xingping,et al.Cavity ring-down spectrometer of CO2 with ppb detection sensitivity[J].Optics and Precision Engineering,2023,31(20):2921-2929. DOI: 10.37188/OPE.20233120.2921.
二氧化碳(Carbon dioxide, CO,2,)是大气中最主要的温室气体,具有大气本底浓度高而年变化量小的特点。因此,对其浓度进行高精度的监测是实现“双碳”目标的重要环节。本文基于连续波光腔衰荡光谱技术,搭建了一套探测灵敏度低至ppb的CO,2,气体传感装置。系统中选取了中心波长为6 251.760 cm,-,1,的CO,2,吸收线、设计了超高精细度(,>,300 000)的石英玻璃型法布里-珀罗谐振腔和高性能的温度、压力控制模块。腔内气体的温度和压力在24 h的变化量分别小于0.07 ℃和15 Pa。Allan方差的结果显示,系统在303 s的最佳积分时间下,可获得0.7×10,-,12, cm,-,1,的检测限,对应的CO,2,最低可检测浓度为1.6 ppb。在较大的CO,2,浓度范围内,系统响应的线性相关系数为0.999 94。最后,系统以10 s的响应时间,对大气中的CO,2,浓度进行了2天的连续观测,其结果与商用仪器(Picarro, G2401)的监测数据高度一致,排除人体呼气干扰后的相对偏差优于6‰。该系统具有结构简单、成本低、灵敏度极高的特点,在痕量气体监测领域将具有广阔的应用前景。
Carbon dioxide (CO,2,) is the most important greenhouse gas in the atmosphere, characterized by high concentrations with minimal annual fluctuations. Therefore, high-precision monitoring of its concentration is an important link to realize the objective of the "double carbon." In this study, a CO,2, gas sensing device, with detection sensitivity in the ppb level, was constructed based on continuous-wave cavity ring-down spectroscopy. The CO,2, absorption line with a central wavelength of 6 251.760 cm,-,1, was selected. Moreover, a quartz glass Fabry-Perot resonant cavity with ultra-high fineness (,>,300 000) and temperature and pressure control modules with good performance were designed in the system. The changes in gas temperature and pressure in the cavity during 24 h are less than 0.07 ℃ and 15 Pa, respectively. The Allan variance result shows that the system can obtain a detection limit of 0.7×10,-,12, cm,-,1, at an optimal integration time of 303 s. For carbon dioxide, the detection limit corresponds to a minimum detectable concentration of 1.6×10,-,9,. The linear correlation coefficient of the system's response is 0.999 94 over a wide range of CO,2, concentrations. Finally, an observation of the atmospheric CO,2, was conducted for 2 days with a system response time of 10 s. The results are in good agreement with the monitoring data from the commercial instrument (Picarro, G2401), and the deviation between the two devices is less than 6‰ after excluding the interference from human exhalation. With its simple structure, low cost, and extremely high sensitivity, the system exhibits a broad application in the field of trace gas monitoring.
CO2探测光学传感光腔衰荡光谱极高灵敏度
CO2 detectionoptical sensingcavity ring-down spectroscopyultra-high sensitivity
BOUCHER O, BORELLA A, GASSER T, et al. On the contribution of global aviation to the CO2 radiative forcing of climate[J]. Atmospheric Environment, 2021, 267: 118762. doi: 10.1016/j.atmosenv.2021.118762http://dx.doi.org/10.1016/j.atmosenv.2021.118762
刘卫, 位楠楠, 王广华, 等. 碳同位素比技术定量估算城市大气CO2的来源[J]. 环境科学, 2012, 33(4): 1041-1049.
LIU W, WEI N N, WANG G H, et al. Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition[J]. Chinese Journal of Environmental Science, 2012, 33(4): 1041-1049.(in Chinese)
袁峰, 高晶, 姚路, 等. 球载CRDS高灵敏度甲烷测量系统的研制[J]. 光学 精密工程, 2020, 28(9): 1881-1892. doi: 10.37188/OPE.20202809.1881http://dx.doi.org/10.37188/OPE.20202809.1881
YUAN F, GAO J, YAO L, et al. Development of highly sensitive balloon-borne methane measurement system based on cavity ringdown spectroscopy[J]. Opt. Precision Eng., 2020, 28(9): 1881-1892.(in Chinese). doi: 10.37188/OPE.20202809.1881http://dx.doi.org/10.37188/OPE.20202809.1881
AI Y K, LI J, LI Q Y, et al. Cavity ringdown spectroscopy of nitric oxide in the ultraviolet region for human breath test[J]. Journal of Breath Research, 2020, 14(3): 037101. doi: 10.1088/1752-7163/ab8184http://dx.doi.org/10.1088/1752-7163/ab8184
MONDAL K, KAIPARA R, RAJAKUMAR B. Investigation of the absorption cross section of phenyl radical and its kinetics with methanol in the gas phase using cavity ring-down spectroscopy and theoretical methodologies[J]. The Journal of Physical Chemistry A, 2019, 123(45): 9682-9692. doi: 10.1021/acs.jpca.9b09302http://dx.doi.org/10.1021/acs.jpca.9b09302
WANG J N, ZHENG L J, NIU X T, et al. Design and fabrication of a mid-infrared carbon dioxide sensor for the application in greenhouse environment[J]. Optoelectronics Letters, 2016, 12(5): 379-383. doi: 10.1007/s11801-016-6079-1http://dx.doi.org/10.1007/s11801-016-6079-1
ESLER M B, GRIFFITH D W T, WILSON S R, et al. Precision trace gas analysis by FT-IR spectroscopy. 1. simultaneous analysis of CO2, CH4, N2O, and CO in air[J]. Analytical Chemistry, 2000, 72(1): 206-215. doi: 10.1021/ac9905625http://dx.doi.org/10.1021/ac9905625
李明星, 陈兵, 阮俊, 等. 近海大尺度区域二氧化碳的激光在线探测技术[J]. 光学 精密工程, 2020, 28(7): 1424-1432. doi: 10.37188/OPE.20202807.1424http://dx.doi.org/10.37188/OPE.20202807.1424
LI M X, CHEN B, RUAN J, et al. On-line detection of carbon dioxide in large scale offshore by laser technology[J]. Opt. Precision Eng., 2020, 28(7): 1424-1432.(in Chinese). doi: 10.37188/OPE.20202807.1424http://dx.doi.org/10.37188/OPE.20202807.1424
FUNKE H H, GRISSOM B L, MCGREW C E, et al. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Review of Scientific Instruments, 2003, 74(9): 3909-3933. doi: 10.1063/1.1597939http://dx.doi.org/10.1063/1.1597939
ROMANINI D, KACHANOV A A, SADEGHI N, et al. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 264(3/4): 316-322. doi: 10.1016/s0009-2614(96)01351-6http://dx.doi.org/10.1016/s0009-2614(96)01351-6
PALDUS B A, JrHARRIS J S, MARTIN J, et al. Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization[J]. Journal of Applied Physics, 1997, 82(7): 3199-3204. doi: 10.1063/1.365688http://dx.doi.org/10.1063/1.365688
HAHN J W, YOO Y S, LEE J Y, et al. Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design[J]. Applied Optics, 1999, 38(9): 1859-1866. doi: 10.1364/ao.38.001859http://dx.doi.org/10.1364/ao.38.001859
ORR BJ, HE Y. Rapidly swept continuous-wave cavity-ringdown spectroscopy[J]. Chemical Physics Letters, 2011, 512(1/2/3): 1-20. doi: 10.1016/j.cplett.2011.05.052http://dx.doi.org/10.1016/j.cplett.2011.05.052
CHEN B, SUN Y R, ZHOU Z Y, et al. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis[J]. Applied Optics, 2014, 53(32): 7716. doi: 10.1364/ao.53.007716http://dx.doi.org/10.1364/ao.53.007716
CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408. doi: 10.1007/s00340-008-3135-yhttp://dx.doi.org/10.1007/s00340-008-3135-y
WANG J D, YU J, MO Z Q, et al. Multicomponent gas detection based on concise CW-cavity ring-down spectroscopy with a bow-Tie design[J]. Applied Optics, 2019, 58(11): 2773. doi: 10.1364/ao.58.002773http://dx.doi.org/10.1364/ao.58.002773
宋绍漫. 连续波光腔衰荡光谱装置及痕量甲烷检测研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.
SONG S M. Continuous Wave Cavity Ring-Down Spectroscopy Device and Trace Methane Detection[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
GUO R M, TENG J H, CAO K, et al. Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters[J]. Optics Express, 2019, 27(22): 31850. doi: 10.1364/oe.27.031850http://dx.doi.org/10.1364/oe.27.031850
马国盛, 刘英, 邓昊, 等. 高精细度光学反馈腔衰荡光谱技术[J]. 光学 精密工程, 2022, 30(19): 2305-2312. doi: 10.37188/OPE.20223019.2305http://dx.doi.org/10.37188/OPE.20223019.2305
MA G S, LIU Y, DENG H, et al. High finesse optical feedback cavity ringdown spectroscopy[J]. Opt. Precision Eng., 2022, 30(19): 2305-2312. (in Chinese). doi: 10.37188/OPE.20223019.2305http://dx.doi.org/10.37188/OPE.20223019.2305
BURKART J, ROMANINI D, KASSI S. Optical feedback frequency stabilized cavity ring-down spectroscopy[J]. Optics Letters, 2014, 39(16): 4695. doi: 10.1364/ol.39.004695http://dx.doi.org/10.1364/ol.39.004695
胡迈, 陈祥, 张辉, 等. 一次谐波锁频的快速光腔衰荡光谱检测[J]. 光学 精密工程, 2022, 30(4): 363-371. doi: 10.37188/OPE.20223004.0363http://dx.doi.org/10.37188/OPE.20223004.0363
HU M, CHEN X, ZHANG H, et al. Fast optical cavity ring-down spectroscopy detection based on first harmonic frequency locking[J]. Opt. Precision Eng., 2022, 30(4): 363-371. (in Chinese). doi: 10.37188/OPE.20223004.0363http://dx.doi.org/10.37188/OPE.20223004.0363
0
浏览量
47
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构