1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
[ "叶 新(1979-),男,吉林省吉林市人,研究员,博士,2005年于中国科学技术大学获得硕士学位,2019年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事星上定标、太阳总辐照度测量方面的研究。E-mail: yexin@ciomp.ac.cn" ]
扫 描 看 全 文
叶新,郑翔远,罗志涛.电替代式辐射热流计光电不等效特性[J].光学精密工程,2023,31(20):2943-2950.
YE Xin,ZHENG Xiangyuan,LUO Zhitao.Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter[J].Optics and Precision Engineering,2023,31(20):2943-2950.
叶新,郑翔远,罗志涛.电替代式辐射热流计光电不等效特性[J].光学精密工程,2023,31(20):2943-2950. DOI: 10.37188/OPE.20233120.2943.
YE Xin,ZHENG Xiangyuan,LUO Zhitao.Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter[J].Optics and Precision Engineering,2023,31(20):2943-2950. DOI: 10.37188/OPE.20233120.2943.
非真空环境下,基于电替代测量原理的辐射热流计存在光电不等性来源复杂、难以开展实验测试修正等问题。为了进一步提高辐射热流计的测量准确度,首先分析辐射热流计光电不等效来源,其次结合传热学理论和限元分析法建立辐射热流计热结构模型,并以真空-空气比对实验验证有限元模型的有效性,最后基于有限元热结构模型对传热过程的不等效性进行修正。有限元模型的真空-空气响应度测试结果与实验测试结果相差1.7%,传热时存在的不等效为0.28%。光电不等效修正系数为1.002 35,相对不确定度为0.29%。通过上述方法完善了辐射热流计的修正体系,提高测量准确度,并为其优化改进提供指导性建议。
In non-vacuum environments, radiation heat flux meters based on the electric substitution measurement principle face challenges such as intricate photoelectric inequality and hurdles in experimental testing and correction. To enhance the meter's accuracy, the photoelectric inequivalence source of the radiant heat flow meter was first analyzed. Subsequently, a thermal structure model for the radiant heat flow meter was developed by combining heat transfer theory with finite element analysis. The model's validity was then ascertained via a vacuum-to-air ratio experiment. Using this finite element thermal structure model, adjustments were made to address the inequivalence in the heat transfer process. The difference between the test results of vacuum-air responsiveness of the finite element model and experimental results is 1.7%, and the inequivalence of heat transfer is 0.28%. The photoelectric inequivalent correction coefficient is 1.002 35, and the relative uncertainty is 0.29%. Hence, this approach refines the radiant heat flux meter's correction system, improves its measurement accuracy, and furnishes valuable recommendations for further optimization and enhancement.
高精度电替代热流密度光电不等效性
high precisionelectric substitutionheat fluxphotoelectric inequivalence
高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程, 2020, 37(3): 218-227. doi: 10.12126/see.2020.03.002http://dx.doi.org/10.12126/see.2020.03.002
GAO Q H, QIE D F. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227.(in Chinese). doi: 10.12126/see.2020.03.002http://dx.doi.org/10.12126/see.2020.03.002
ZHOU K B, LIU N A, ZHANG L H, et al. Thermal radiation from fire whirls: revised solid flame model[J]. Fire Technology, 2014, 50(6): 1573-1587. doi: 10.1007/s10694-013-0360-7http://dx.doi.org/10.1007/s10694-013-0360-7
GIFFORD A R, HUBBLE D O, PULLINS C A, et al. Durable heat flux sensor for extreme temperature and heat flux environments[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(1): 69-76. doi: 10.2514/1.42298http://dx.doi.org/10.2514/1.42298
YE X, YI X L, LIN C, et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J]. Remote Sensing, 2020, 12(17): 2856. doi: 10.3390/rs12172856http://dx.doi.org/10.3390/rs12172856
THUILLIER G, ZHU P, SNOW M, et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J]. Light: Science & Applications, 2022, 11: 79. doi: 10.1038/s41377-022-00750-7http://dx.doi.org/10.1038/s41377-022-00750-7
闫指江, 沈丹, 吴彦森, 等. 多喷管运载火箭底部热环境研究[J]. 导弹与航天运载技术, 2021(1): 105-109, 114.
YAN Z J, SHEN D, WU Y S, et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles, 2021(1): 105-109, 114.(in Chinese)
衣小龙, 杨振岭, 叶新, 等. 低温辐射计斜底腔吸收比测量[J]. 光学 精密工程, 2015, 23(10): 2733-2739. doi: 10.3788/ope.20152310.2733http://dx.doi.org/10.3788/ope.20152310.2733
YI X L, YANG Z L, YE X, et al. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Opt. Precision Eng., 2015, 23(10): 2733-2739.(in Chinese). doi: 10.3788/ope.20152310.2733http://dx.doi.org/10.3788/ope.20152310.2733
衣小龙, 方伟, 林延东, 等. 空间低温绝对辐射初级基准实验特性及测量精度评估[J]. 光学 精密工程, 2021, 29(1): 10-20. doi: 10.37188/OPE.20212901.0010http://dx.doi.org/10.37188/OPE.20212901.0010
YI X L, FANG W, LIN Y D, et al. Experimental characteristics and measurement accuracy evaluation of space cryogenic absolute radiometric primary benchmark[J]. Opt. Precision Eng., 2021, 29(1): 10-20.(in Chinese). doi: 10.37188/OPE.20212901.0010http://dx.doi.org/10.37188/OPE.20212901.0010
吴铎, 王凯, 叶新, 等. 空间低温绝对辐射计研究[J]. 发光学报, 2019, 40(8): 1015-1021. doi: 10.3788/fgxb20194008.1015http://dx.doi.org/10.3788/fgxb20194008.1015
WU D, WANG K, YE X, et al. Space cryogenic absolute radiometer[J]. Chinese Journal of Luminescence, 2019, 40(8): 1015-1021.(in Chinese). doi: 10.3788/fgxb20194008.1015http://dx.doi.org/10.3788/fgxb20194008.1015
高鑫, 王凯, 方伟. 太阳辐照度绝对辐射计吸收腔结构优化[J]. 光学 精密工程, 2018, 26(3): 624-631. doi: 10.3788/ope.20182603.0624http://dx.doi.org/10.3788/ope.20182603.0624
GAO X, WANG K, FANG W. Optimization on the structure of the absorption cavity of solar irradiance absolute radiometer[J]. Opt. Precision Eng., 2018, 26(3): 624-631.(in Chinese). doi: 10.3788/ope.20182603.0624http://dx.doi.org/10.3788/ope.20182603.0624
唐潇, 贾平, 王凯, 等. 太阳辐照度绝对辐射计的光电不等效性修正[J]. 光学 精密工程, 2016, 34(10): 2370-2376. doi: 10.3788/ope.20162410.2370http://dx.doi.org/10.3788/ope.20162410.2370
TANG X, JIA P, WANG K, et al. Non-equivalence correction of solar irradiance absolute radiometer[J]. Opt. Precision Eng., 2016, 34(10): 2370-2376.(in Chinese). doi: 10.3788/ope.20162410.2370http://dx.doi.org/10.3788/ope.20162410.2370
唐潇, 方伟, 王玉鹏. 绝对辐射计一次反射不等效的影响及实验分析[J]. 中国激光, 2016, 43(4): 0408003. doi: 10.3788/cjl201643.0408003http://dx.doi.org/10.3788/cjl201643.0408003
TANG X, FANG W, WANG Y P. Effect and experiment analysis of first specular reflection error on absolute radiometers[J]. Chinese Journal of Lasers, 2016, 43(4): 0408003.(in Chinese). doi: 10.3788/cjl201643.0408003http://dx.doi.org/10.3788/cjl201643.0408003
郑翔远, 叶新, 罗志涛, 等. 高精度辐射热流计的不确定度分析与评价[J]. 中国光学(中英文), 2022(4): 780-788. doi: 10.37188/co.2022-0023http://dx.doi.org/10.37188/co.2022-0023
ZHENG X Y, YE X, LUO Z T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022(4): 780-788.(in Chinese). doi: 10.37188/co.2022-0023http://dx.doi.org/10.37188/co.2022-0023
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构