1.上海工程技术大学 机械与汽车工程学院,上海 201620
2.格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆 GL50 2RH
3.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
4.上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海 200240
[ "司马津甫(1999-),男,辽宁丹东人,硕士研究生,2021年于南京航空航天大学获得本科学位,主要从事微纳米定位技术方面的研究。E-mail: smajinfu@163.com" ]
[ "赖磊捷(1984-),男,浙江宁波人,博士,副教授,2014年于上海交通大学获得博士学位,主要从事微位移驱动控制、微纳制造装备等领域的研究。E-mail: lailj@sues.edu.cn" ]
扫 描 看 全 文
司马津甫,赖磊捷,李朋志等.三自由度压电偏摆台耦合迟滞模型建模与逆补偿[J].光学精密工程,2023,31(20):2964-2974.
SIMA Jinfu,LAI Leijie,LI Pengzhi,et al.Coupled hysteresis model and its inverse compensation for three-degree-of-freedom tip-tilt-piston piezoelectric stage[J].Optics and Precision Engineering,2023,31(20):2964-2974.
司马津甫,赖磊捷,李朋志等.三自由度压电偏摆台耦合迟滞模型建模与逆补偿[J].光学精密工程,2023,31(20):2964-2974. DOI: 10.37188/OPE.20233120.2964.
SIMA Jinfu,LAI Leijie,LI Pengzhi,et al.Coupled hysteresis model and its inverse compensation for three-degree-of-freedom tip-tilt-piston piezoelectric stage[J].Optics and Precision Engineering,2023,31(20):2964-2974. DOI: 10.37188/OPE.20233120.2964.
为了解决三自由度压电驱动纳米偏摆台中的多轴耦合与迟滞问题,设计了一种可以同时表征多个压电驱动器间耦合效应及其自身迟滞效应的耦合迟滞模型,并利用其逆模型进行前馈补偿以提升平台的定位和轨迹跟踪精度。首先,搭建了三自由度压电驱动偏摆台的控制系统并建立其运动学模型,将末端平台三自由度运动转化为三个压电驱动器的输出。然后,建立基于Prandtl-Ishlinskii模型的耦合迟滞模型,并对该模型及其逆模型的参数进行辨识。最后,通过开环逆模型前馈补偿来验证模型的有效性,并利用结合逆模型前馈和反馈的复合控制方法进行轨迹跟踪控制。实验结果表明:逆模型开环前馈补偿使三个压电驱动器间最大耦合位移均降低了70%以上,证明了所建立耦合迟滞模型的有效性,结合闭环反馈的复合控制方法对空间轨迹进行跟踪的最大均方根误差仅为0.06 mrad和0.42 μm,相比单纯闭环反馈分别减少了72%和87.5%,最大误差也减少了76%以上,有效消除了平台中耦合迟滞的影响,提高了平台的定位精度。
To solve the problems of multi-axis coupling and hysteresis in a three-degree-of-freedom tip–tilt–piston piezoelectric stage, a coupled hysteresis model was designed to simultaneously characterize the coupling effect between multiple piezoelectric actuators and their own hysteresis effect. Its inverse model was used for feedforward compensation to increase the positioning and trajectory tracking accuracies of the stage. First, the control system and kinematics model of the three-degree-of-freedom piezoelectric stage were developed, and the three-degree-of-freedom motion of the end-effector was transformed into the outputs of three piezoelectric actuators. Then, a coupled hysteresis model based on the Prandtl–Ishlinskii model was established, and the parameters of the model and its inverse model were identified. Finally, the effectiveness of the coupled hysteresis model was verified through open-loop inverse model feedforward compensation, and a compound control method combining inverse model feedforward and feedback was used for trajectory tracking control. The experimental results indicate that the inverse open-loop compensation reduced the maximum coupling displacements between the three piezoelectric actuators by >70%, confirming the effectiveness of the developed coupling hysteresis model. The maximum root mean square errors of the compound control method combined with closed-loop feedback for tracking the spatial trajectory are only 0.06 mrad and 0.42 μm, which are reduced by 72% and 87.5%, respectively, compared with those in the case where only closed-loop feedback was used, and the maximum error is reduced by at least 76%. The proposed coupled hysteresis model and its inverse compensation can eliminate the influence of coupling hysteresis in the stage, and significantly increase the positioning accuracy of the stage.
压电偏摆台压电驱动器耦合迟滞模型逆补偿跟踪控制
tip-tilt-piston piezoelectric stagepiezoelectric actuatorcoupled hysteresis modelinverse compensationtracking control
刘永凯, 吕福睿, 高世杰, 等. 地基大口径望远镜动态目标跟踪中压电式快速反射镜迟滞效应的补偿[J]. 光学 精密工程, 2022, 30(23): 3081-3089. doi: 10.37188/ope.20223023.3081http://dx.doi.org/10.37188/ope.20223023.3081
LIU Y K, LÜ F R, GAO S J, et al. Compensation of hysteresis effect of piezoelectric fast steering mirror in dynamic target tracking of ground-based large aperture telescope system[J]. Opt. Precision Eng., 2022, 30(23): 3081-3089.(in Chinese). doi: 10.37188/ope.20223023.3081http://dx.doi.org/10.37188/ope.20223023.3081
LIANG C M, WANG F J, HUO Z C, et al. A 2-DOF monolithic compliant rotation platform driven by piezoelectric actuators[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6963-6974. doi: 10.1109/tie.2019.2935933http://dx.doi.org/10.1109/tie.2019.2935933
王耿, 魏维宁, 代军, 等. 线性偏摆复合型压电微动平台[J]. 光学 精密工程, 2022, 30(9): 1058-1070. doi: 10.37188/OPE.20223009.1058http://dx.doi.org/10.37188/OPE.20223009.1058
WANG G, WEI W N, DAI J, et al. Linear yaw compound piezoelectric micro-motion platform[J]. Opt. Precision Eng., 2022, 30(9): 1058-1070.(in Chinese). doi: 10.37188/OPE.20223009.1058http://dx.doi.org/10.37188/OPE.20223009.1058
黄涛, 罗治洪, 陶桂宝, 等. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学 精密工程, 2022, 30(14): 1716-1724. doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
HUANG T, LUO Z H, TAO G B, et al. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Opt. Precision Eng., 2022, 30(14): 1716-1724.(in Chinese). doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
李致富, 黄楠, 钟云, 等. 压电驱动器迟滞非线性的分数阶建模及实验验证[J]. 光学 精密工程, 2020, 28(5): 1124-1131.
LI Z F, HUANG N, ZHONG Y, et al. Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Opt. Precision Eng., 2020, 28(5): 1124-1131.(in Chinese)
王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程, 2018, 26(10): 2484-2492. doi: 10.3788/ope.20182610.2484http://dx.doi.org/10.3788/ope.20182610.2484
WANG Z Y, JIA G X. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Opt. Precision Eng., 2018, 26(10): 2484-2492. (in Chinese). doi: 10.3788/ope.20182610.2484http://dx.doi.org/10.3788/ope.20182610.2484
顾胜良, 王建平, 胡红专, 等. 基于Preisach模型的光纤定位单元R机构精定位的实现[J]. 光学 精密工程, 2022, 30(18): 2205-2218. doi: 10.37188/OPE.20223018.2205http://dx.doi.org/10.37188/OPE.20223018.2205
GU S L, WANG J P, HU H Z, et al. Realization of precise positioning of fiber positioning unit R mechanism based on Preisach model[J]. Opt. Precision Eng., 2022, 30(18): 2205-2218. (in Chinese). doi: 10.37188/OPE.20223018.2205http://dx.doi.org/10.37188/OPE.20223018.2205
杨晓京, 胡俊文, 李庭树. 压电微定位台的率相关动态迟滞建模及参数辨识[J]. 光学 精密工程, 2019, 27(3): 610-618. doi: 10.3788/ope.20192703.0610http://dx.doi.org/10.3788/ope.20192703.0610
YANG X J, HU J W, LI T S. Rate-dependent dynamic hysteresis modeling of piezoelectric micro platform and its parameter identification[J]. Opt. Precision Eng., 2019, 27(3): 610-618. (in Chinese). doi: 10.3788/ope.20192703.0610http://dx.doi.org/10.3788/ope.20192703.0610
SU X H, LIU Z, ZHANG Y, et al. Event-triggered adaptive fuzzy tracking control for uncertain nonlinear systems preceded by unknown Prandtl–ishlinskii hysteresis[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 2979-2992. doi: 10.1109/tcyb.2019.2949022http://dx.doi.org/10.1109/tcyb.2019.2949022
张东岳, 王伟国, 张振东, 等. 压电偏摆台的复合控制[J]. 压电与声光, 2017, 39(1): 40-43.
ZHANG D Y, WANG W G, ZHANG Z D, et al. Compound control of piezoelectric oscillating table[J]. Piezoelectrics & Acoustooptics, 2017, 39(1): 40-43.(in Chinese)
JANAIDEH MAL, KREJČÍ P. Inverse rate-dependent Prandtl–ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator[J]. IEEE/ASME Transactions on Mechatronics, 2012, 18(5): 1498-1507. doi: 10.1109/tmech.2012.2205265http://dx.doi.org/10.1109/tmech.2012.2205265
YANG M J, LI C X, GU G Y, et al. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Frontiers of Mechanical Engineering, 2015, 10(1): 37-42. doi: 10.1007/s11465-015-0326-1http://dx.doi.org/10.1007/s11465-015-0326-1
RANA M S, POTA H R, PETERSEN I R. Approach for improved positioning of an atomic force microscope piezoelectric tube scanner[J]. Micro & Nano Letters, 2014, 9(6): 407-411. doi: 10.1049/mnl.2014.0104http://dx.doi.org/10.1049/mnl.2014.0104
BHAGAT U, SHIRINZADEH B, CLARK L, et al. Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(6): 1737-1745. doi: 10.1109/tmech.2014.2300481http://dx.doi.org/10.1109/tmech.2014.2300481
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构