1.武汉大学 遥感信息工程学院,湖北 武汉 430079
[ "周 昊(1997—),男,湖南株洲人,博士生,分别于2019、2022年在武汉大学获得学士、硕士学位,主要从事高分辨率成像激光雷达及信号处理的研究。E-mail: zhouhao2015@whu.edu.cn" ]
[ "毛庆洲(1977—),男,安徽宁国人,教授,博士生导师,1999年于武汉测绘科技大学获得学士学位,分别于2002、2008年在武汉大学获得硕士、博士学位,主要从事空间智能遥感仪器,高分辨率激光雷达、动态精密工程测量、基础设施结构状态安全监测等技术与装备的研究。E-mail: qzhmao@ whu.edu.cn" ]
扫 描 看 全 文
周昊,毛庆洲,胡雪晴等.高转速扫描激光雷达中探测器偏离焦平面的应用[J].光学精密工程,2023,31(21):3077-3087.
ZHOU Hao,MAO Qingzhou,HU Xueqing,et al.Application of detector deviation from focal plane in high speed scanning LiDAR[J].Optics and Precision Engineering,2023,31(21):3077-3087.
周昊,毛庆洲,胡雪晴等.高转速扫描激光雷达中探测器偏离焦平面的应用[J].光学精密工程,2023,31(21):3077-3087. DOI: 10.37188/OPE.20233121.3077.
ZHOU Hao,MAO Qingzhou,HU Xueqing,et al.Application of detector deviation from focal plane in high speed scanning LiDAR[J].Optics and Precision Engineering,2023,31(21):3077-3087. DOI: 10.37188/OPE.20233121.3077.
为了提高激光雷达测距的动态范围,解决高转速扫描激光雷达测量远距离目标时的脱靶问题,提出了探测器偏离焦平面的方法。对远距离回波脱靶现象、探测器在焦平面径向和轴向上偏离的作用原理、回波光斑在焦平面附近的空间能量分布进行研究。根据目标距离、激光扫描线转速、焦距和离焦量,分析回波光斑中心相对于光轴的径向偏离角和径向偏离量。当不同距离回波的像平面、光学系统焦平面和探测器靶面之间的相对位置变化时,分析了回波光斑尺寸在探测器靶面的变化规律。考虑激光高斯光束的能量分布、光学系统孔径光阑、衍射和离焦的影响,分析了回波光斑在探测器平面的能量分布以及探测器靶面的收光率。最后,通过数值仿真和实际测试验证了探测器在偏离焦平面后对不同距离回波的收光率的变化规律。实验结果表明:在75 Hz四棱塔镜扫描方式下,通过调节径向偏离能测到的最远目标距离从约800 m提高至约1 300 m;通过调节轴向偏离,保证远距离回波收光率基本不变的情况下,5 m目标的收光率可降低约70%。该方法基本解决了远距离回波脱靶问题,提高了测距动态范围。
In order to improve the dynamic range of LiDAR and to address the issue of off-target measurements in high-speed scanning LiDAR systems when capturing long-range targets, a method that involves deviation of the detector from the focal plane is proposed. The off-target phenomenon of distant targets, the principle of radial and axial deviation of the detector in the focal plane, and the spatial energy distribution of the echo spot near the focal plane are investigated. First, the scanning speed, focal length, and defocusing amount of the laser and the radial deviation angle and radial deviation amount of the echo spot center relative to the optical axis are analyzed according to the target distance. Next, the effect of variation in echo spot size on the detector is analyzed when the relative position relationship between the image plane, the focal plane, and the detector changes. Subsequently, the energy distribution of the echo spot in the detector and the light-receiving efficiency are evaluated, considering the effects of the energy distribution of the Gaussian beam, the aperture diaphragm of the optical system, diffraction, and defocusing. Finally, the variation law of the light-receiving efficiency of the target echo at different distances after the detector deviates from the focal plane is verified using numerical simulations and experiments. The experimental results indicate that the farthest target can be measured from approximately 800 to 1 300 m by adjusting the radial offset under the 75 Hz quadrilateral tower mirror-scanning mode. By adjusting the axial deviation, the light-receiving efficiency of the 5 m target can be decreased by approximately 70%, whereas that of the long-range target remains basically unchanged. The proposed method solves the problem of off-target echo in long-range targets and improves the dynamic range of LiDAR.
激光雷达动态范围脱靶离焦
LiDARdynamic rangeoff-targetdefocusing
李清泉, 毛庆洲. 道路/轨道动态精密测量进展[J]. 测绘学报, 2017, 46(10): 1734-1741. doi: 10.11947/j.AGCS.2017.20170323http://dx.doi.org/10.11947/j.AGCS.2017.20170323
LI Q Q, MAO Q ZH. Progress on dynamic and precise engineering surveying for pavement and track[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1734-1741.(in Chinese). doi: 10.11947/j.AGCS.2017.20170323http://dx.doi.org/10.11947/j.AGCS.2017.20170323
毛庆洲, 董翠军, 胡伟. 基于移动激光扫描数据的铁路轨顶高程自动提取方法[J]. 铁道学报, 2021, 43(7):108-113. doi: 10.3969/j.issn.1001-8360.2021.07.014http://dx.doi.org/10.3969/j.issn.1001-8360.2021.07.014
MAO Q ZH, DONG C J, HU W. Method of automatic extraction of rail head elevation based on mobile laser scanning data[J]. Journal of the China Railway Society, 2021, 43(7):108-113. (in Chinese). doi: 10.3969/j.issn.1001-8360.2021.07.014http://dx.doi.org/10.3969/j.issn.1001-8360.2021.07.014
郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10):1538-1547.
GUO CH, XU Q, DONG X J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547.(in Chinese)
伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4):489-497. doi: 10.37188/OPE.20223004.0489http://dx.doi.org/10.37188/OPE.20223004.0489
WU X R, XUE Q W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Optics and Precision Engineering, 2022, 30(4):489-497.(in Chinese). doi: 10.37188/OPE.20223004.0489http://dx.doi.org/10.37188/OPE.20223004.0489
SHE J X, MABI A W, LIU Z M, et al. Analysis using high-precision airborne LiDAR data to survey potential collapse geological hazards[J]. Advances in Civil Engineering, 2021, 2021: 1-10. doi: 10.1155/2021/6475942http://dx.doi.org/10.1155/2021/6475942
WAGNER W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 505-513. doi: 10.1016/j.isprsjprs.2010.06.007http://dx.doi.org/10.1016/j.isprsjprs.2010.06.007
周昊, 毛庆洲, 李清泉. 采样频率和激光脉宽对全波形激光雷达测距精度的影响[J]. 红外与激光工程, 2022, 51(4): 3788/IRLA20210363. doi: 10.3788/IRLA20210363http://dx.doi.org/10.3788/IRLA20210363
ZHOU H, MAO Q ZH, LI Q Q. Influence of sampling frequency and laser pulse width on ranging accuracy of full waveform lidar[J]. Infrared and Laser Engineering, 2022, 51(4): 3788/IRLA20210363.(in Chinese). doi: 10.3788/IRLA20210363http://dx.doi.org/10.3788/IRLA20210363
GUO K, LI Q Q, WANG CH SH, et al. Development of a single-wavelength airborne bathymetric LiDAR: system design and data processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 62-84. doi: 10.1016/j.isprsjprs.2022.01.011http://dx.doi.org/10.1016/j.isprsjprs.2022.01.011
MA R, LIU M L, ZHENG H, et al. A 77-dB dynamic range low-power variable-gain transimpedance amplifier for linear LADAR[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(2): 171-175. doi: 10.1109/tcsii.2017.2684822http://dx.doi.org/10.1109/tcsii.2017.2684822
史芪纬. 脉冲式激光测距系统的研究[D]. 南京: 南京理工大学, 2013.
SHI Q W. Research on Pulsed Laser Ranging System[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
LIENERT B, PORTER J, AHLQUIST N, et al. A 50 MHz logarithmic amplifier for use in lidar measurements[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).9-13,2001, Sydney, NSW, Australia. IEEE, 2002: 2914-2915. doi: 10.1109/igarss.2001.976554http://dx.doi.org/10.1109/igarss.2001.976554
张冰娜, 黄庚华, 舒嵘, 等. 用于大动态范围厘米精度激光测距的孔径光阑自动调整技术[J]. 红外与激光工程, 2013, 42(7): 1788-1792. doi: 10.3969/j.issn.1007-2276.2013.07.025http://dx.doi.org/10.3969/j.issn.1007-2276.2013.07.025
ZHANG B N, HUANG G H, SHU R, et al. Automatic adjustment technology of diaphragm used for large dynamic laser ranging with centimetre grade precision[J]. Infrared and Laser Engineering, 2013, 42(7): 1788-1792.(in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.025http://dx.doi.org/10.3969/j.issn.1007-2276.2013.07.025
SHI G Y, LI S, HUANG K, et al. Numerical ray-tracing approach with laser intensity distribution for LIDAR signal power function computation[J].Optical Review, 2016, 23(5): 770-775. doi: 10.1007/s10043-016-0261-3http://dx.doi.org/10.1007/s10043-016-0261-3
朱世贤, 赵毅强, 叶茂, 等. 大动态范围激光雷达回波信号饱和处理算法[J]. 光子学报, 2018, 47(12): 1228003. doi: 10.3788/gzxb20184712.1228003http://dx.doi.org/10.3788/gzxb20184712.1228003
ZHU SH X, ZHAO Y Q, YE M, et al. Saturated echo signal algorithm for wide dynamic range lidar[J]. Acta Photonica Sinica, 2018, 47(12): 1228003.(in Chinese). doi: 10.3788/gzxb20184712.1228003http://dx.doi.org/10.3788/gzxb20184712.1228003
白杨,唐伟,徐诗月,等.激光成像雷达近程大动态范围实时高精度测距方法[J].红外与激光工程,2020,49(S2):118-123.
BAI Y, TANG W, XU SH Y, et al. Real-time and high-precision ranging method for large dynamic range of imaging lidar [J]. Infrared and Laser Engineering, 2020, 49(s2): 118-123. (in Chinese)
胡以华, 薛永祺, 方抗美, 等. 对地观测激光扫描成像探测效果研究[J]. 红外与毫米波学报, 2001, 20(5):335-339. doi: 10.3321/j.issn:1001-9014.2001.05.004http://dx.doi.org/10.3321/j.issn:1001-9014.2001.05.004
HU Y H, XUE Y Q, FANG K M, et al. Sounding effect of laser scanning imaging in earth observation[J]. Journal of Infrared and Millimeter Waves, 2001, 20(5):335-339.(in Chinese). doi: 10.3321/j.issn:1001-9014.2001.05.004http://dx.doi.org/10.3321/j.issn:1001-9014.2001.05.004
王春晖,顾宗山,王骐.会聚光束扫描降低相干激光成像雷达滞后角的方法[C].中国光学学会,中国电子学会.第十七届全国激光学术会议论文集.科学出版社,2005:111-115.
WANG CH H, GU Z SH, WANG Q. Reducing lag angle of coherent laser imagine radar using converging beam scanning [C]. Optical Society of China, Electronics Society of China. Proceedings of the 17th National Laser Conference. Science Press, 2005: 111-115. (in Chinese)
SHAO F. Correction of optical lag-angle for monostatic LIDAR sensors[C].Proc SPIE 11455, Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, 2020, 11455: 751-755. doi: 10.1117/12.2564065http://dx.doi.org/10.1117/12.2564065
ITO Y, IMAKI M, SAKIMURA T, et al. Evidence of decreased heterodyne-detection efficiency caused by fast beam scanning in wind sensing coherent Doppler lidar, and demonstration on recovery of the efficiency with lag-angle compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10. doi: 10.1109/tgrs.2022.3196666http://dx.doi.org/10.1109/tgrs.2022.3196666
ZHOU H, MAO Q Z, SONG Y F, et al. Analysis of internal angle error of UAV LiDAR based on rotating mirror scanning[J]. Remote Sensing, 2022, 14(20): 5260. doi: 10.3390/rs14205260http://dx.doi.org/10.3390/rs14205260
李林. 应用光学: 英文版[M]. 2版. 北京: 北京理工大学出版社, 2012.
LI L. Applied Optics[M]. 2nd ed. Beijing: Beijing Insititute of Technology Press, 2012.(in Chinese)
金思宇,刘英,党博石,等.异形孔径光阑成像系统像方空间光强分布计算[J/OL].激光与光电子学进展.(2022-07-17) https://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1147.029.htmlhttps://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1147.029.html. doi: 10.3788/lop221217http://dx.doi.org/10.3788/lop221217
JING S Y, LIU Y, DANG B SH, et al. Calculation of light intensity distribution in image space of imaging system with arbitrary aperture diaphragm [J/OL]. Laser & Optoelectronics Progress. (2022-07-17). https://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1147.029.html.https://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1147.029.html.(in Chinese). doi: 10.3788/lop221217http://dx.doi.org/10.3788/lop221217
夏珉. 激光原理与技术实验[M]. 北京: 科学出版社, 2017.
XIA M. Laser Principle and Technology Experiment[M]. Beijing: Science Press, 2017.(in Chinese)
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构