1.东南大学 仪器科学与工程学院 微惯性仪表与先进导航技术教育部重点实验室, 江苏 南京 210096
2.国网江苏省电力有限公司,江苏 南京210024
3.国电南瑞科技股份有限公司,江苏 南京211100
[ "王立辉(1979-),男,教授,博导,主要从事无人系统自主导航、智能算法等方面的应用研究。E-mail:wlhseu@163.com" ]
[ "苏余足威(1998-),男,硕士研究生,主要研究方向为三维视觉。E-mail:wangyi_sy1256@163.com" ]
扫 描 看 全 文
王立辉,苏余足威,韩华春等.智能换电站电池包锁止机构位姿视觉估计[J].光学精密工程,2023,31(21):3135-3144.
WANG Lihui,SU Yuzuwei,HAN Chunhua,et al.Visual 6D pose estimation of battery package locking mechanism in intelligent battery swapping station[J].Optics and Precision Engineering,2023,31(21):3135-3144.
王立辉,苏余足威,韩华春等.智能换电站电池包锁止机构位姿视觉估计[J].光学精密工程,2023,31(21):3135-3144. DOI: 10.37188/OPE.20233121.3135.
WANG Lihui,SU Yuzuwei,HAN Chunhua,et al.Visual 6D pose estimation of battery package locking mechanism in intelligent battery swapping station[J].Optics and Precision Engineering,2023,31(21):3135-3144. DOI: 10.37188/OPE.20233121.3135.
面向电动汽车的电池换电需求,对换电站电池包对接中的锁止机构定位问题,提出了一种基于点云分割的电池包锁止机构6D位姿估计方法。该方法使用YOLOv5网络从场景中分割出锁止机构的点云,并使用体素滤波与移动最小二乘拟合进行点云的滤波与平滑;通过引入点云分割网络预测点云标签,为快速点特征直方图特征加入全局语义特征,弥补快速点特征直方图只有点云局部特征的缺陷,并根据该特征进行随机抽样一致性刚体点云配准,估计锁止机构点云的6D位姿,最后使用迭代最近点方法算法校正位姿估计结果。实验结果表明,基于点云分割的锁止机构6D位姿估计算法精度较高,可以克服环境噪声导致的误匹配,精确获取锁止机构位姿,其位姿估计的角度误差可以达到1.90°,位移误差可以达到1.4 mm,RMSE可以达到1.5 mm,为换电站电池对接定位提供了有效的解决途径。
In order to meet the battery replacement demand of electric vehicles, a 6D pose estimation method of battery package locking mechanism based on point cloud segmentation is proposed to solve the positioning problem of locking mechanism during battery package docking in battery swapping station. This method uses YOLOv5 network to segment the point cloud of locking mechanism from the scene, and uses voxel filtering and moving least square fitting to filter and smooth the point cloud. The point cloud labels are predicted by the point cloud segmentation network, and the global semantic feature is added to the Fast Point Feature Histograms (FPFH) feature to make up for the defect that the FPFH has only the local feature of the point cloud. According to this feature, the Random Sample Consensus (RANSAC) rigid point cloud registration is leveraged, and the 6D pose of the locking mechanism point cloud is estimated. Finally, the Iterative Closest Point(ICP) algorithm is used to correct the pose estimation results. The experimental results show that the 6D pose estimation algorithm of locking mechanism based on point cloud segmentation has high accuracy, and can overcome the mismatching caused by environmental noise, and accurately obtain the position and attitude of locking mechanism. The angle error of position and attitude estimation can reach 1.90°, the displacement error can reach 1.4 mm, and the RMSE can reach 1.5 mm, which provides an effective solution for battery docking positioning in battery swapping station.
换电机器人电池包位姿估计点云配准点云分割
battery swapping robotbattery packpose estimationpoint cloud registrationpoint cloud segmentation
周芮, 刘延芳, 齐乃明, 等. 面向空间应用的视觉位姿估计技术综述[J]. 光学 精密工程, 2022, 30(20): 2538-2553. doi: 10.37188/OPE.20223020.2538http://dx.doi.org/10.37188/OPE.20223020.2538
ZHOU R, LIU Y F, QI N M, et al. Overview of visual pose estimation methods for space missions[J]. Optics and Precision Engineering, 2022, 30(20): 2538-2553.(in Chinese). doi: 10.37188/OPE.20223020.2538http://dx.doi.org/10.37188/OPE.20223020.2538
杨宁, 申景诗, 张建德, 等. 基于立体视觉的空间非合作航天器相对位姿自主测量[J]. 光学 精密工程, 2017, 25(5):1331-1339. doi: 10.3788/ope.20172505.1331http://dx.doi.org/10.3788/ope.20172505.1331
YANG N, SHEN J SH, ZHANG J D, et al. Autonomous measurement of relative attitude and positionfor spatial non-cooperative spacecraft based on stereo vision[J]. Optics and Precision Engineering, 2017, 25(5):1331-1339. (in Chinese). doi: 10.3788/ope.20172505.1331http://dx.doi.org/10.3788/ope.20172505.1331
李莹, 叶培建, 彭兢, 等. 基于火星探测的人工标志识别定位[J]. 光学 精密工程, 2015, 23(2):566-572. doi: 10.3788/ope.20152302.0566http://dx.doi.org/10.3788/ope.20152302.0566
LI Y, YE P J, PENG J, et al. Artificial target recognition and location based on Mars exploration[J]. Optics and Precision Engineering, 2015, 23(2):566-572.(in Chinese). doi: 10.3788/ope.20152302.0566http://dx.doi.org/10.3788/ope.20152302.0566
DROST B, ULRICH M, NAVAB N, et al. Model globally, match locally: efficient and robust 3D object recognition[C].2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 13-18,2010, San Francisco, CA, USA. IEEE, 2010: 998-1005. doi: 10.1109/cvpr.2010.5540108http://dx.doi.org/10.1109/cvpr.2010.5540108
HINTERSTOISSER S, LEPETIT V, ILIC S, et al. Model Based Training, Detection and Pose Estimation of Texture-less 3D Objects in Heavily Cluttered Scenes[M].Computer Vision - ACCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 548-562. doi: 10.1007/978-3-642-37331-2_42http://dx.doi.org/10.1007/978-3-642-37331-2_42
OGUN P S, USMAN Z, DHARMARAJ K, et al. 3D vision assisted flexible robotic assembly of machine components[C].Proc SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 2015, 9875: 342-348.
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2020.
WU D, LIAO M W, ZHANG W T, et al. YOLOP: You only look once for panoptic driving perception[J].Machine Intelligence Research, 2022, 19(6): 550-562. doi: 10.1007/s11633-022-1339-yhttp://dx.doi.org/10.1007/s11633-022-1339-y
艾卫涛. 三维激光扫描点云去噪及在建模中的应用[D]. 西安: 西安科技大学, 2017.
AI W T. Denoising of 3D Laser Scanning Point Cloud and Its Application In Modeling[D]. Xi'an: Xi'an University of Science and Technology, 2017. (in Chinese)
曾清红, 卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004(1): 84-89. doi: 10.3969/j.issn.1003-0158.2004.01.017http://dx.doi.org/10.3969/j.issn.1003-0158.2004.01.017
ZENG Q H, LU D. Curve and surface fitting based on moving least-squares methods[J]. Journal of Engineering Graphics, 2004(1): 84-89.(in Chinese). doi: 10.3969/j.issn.1003-0158.2004.01.017http://dx.doi.org/10.3969/j.issn.1003-0158.2004.01.017
ZHOU Q Y, PARK J, KOLTUN V. Fast Global Registration[M].Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 766-782. doi: 10.1007/978-3-319-46475-6_47http://dx.doi.org/10.1007/978-3-319-46475-6_47
RUSU R B, BLODOW N, MARTON Z C, et al. Aligning point cloud views using persistent feature histograms[C].2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 22-26,2008, Nice, France. IEEE, 2008: 3384-3391. doi: 10.1109/iros.2008.4650967http://dx.doi.org/10.1109/iros.2008.4650967
RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C].2009 IEEE International Conference on Robotics and Automation. 12-17,2009, Kobe, Japan. IEEE, 2009: 3212-3217. doi: 10.1109/robot.2009.5152473http://dx.doi.org/10.1109/robot.2009.5152473
QI C R , YI L, SU H, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in A Metric Space[EB/OL]. 2017: arXiv: 1706.02413. https://arxiv.org/abs/1706.02413.pdfhttps://arxiv.org/abs/1706.02413.pdf.
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C].2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26,2017, Honolulu, HI, USA. IEEE, 2017: 77-85. doi: 10.1109/cvpr.2017.16http://dx.doi.org/10.1109/cvpr.2017.16
FISCHLER M A, BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography[M].Readings in Computer Vision. Amsterdam: Elsevier, 1987: 726-740. doi: 10.1016/b978-0-08-051581-6.50070-2http://dx.doi.org/10.1016/b978-0-08-051581-6.50070-2
HUBER P J. Robust estimation of a location parameter[J]. The Annals of Mathematical Statistics, 1964, 35(1): 73-101. doi: 10.1214/aoms/1177703732http://dx.doi.org/10.1214/aoms/1177703732
BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. doi: 10.1109/34.121791http://dx.doi.org/10.1109/34.121791
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构