1.西安空间无线电技术研究所,陕西 西安 710100
2.西安电子科技大学 机电工程学院,陕西 西安 710071
[ "李 昊(1993-),男,陕西西安人,博士,工程师,2022年于西安交通大学获博士学位,现为西安空间无线电技术研究所工程师,主要从事空间可展开机构研究。E-mail: lh651628333@stu.xjtu.edu.cn" ]
[ "马小飞(1980-),男,甘肃甘谷人,博士,研究员,博士生导师,现为航天五院西安分院空间天线技术研究所所长,主要从事星载天线、大型空间可展开结构与机构等方面的研究。E-mail: maxf041600@sina.com" ]
扫 描 看 全 文
李昊,马小飞,火统龙等.可展开固体反射面天线折展机构设计及分析[J].光学精密工程,2023,31(22):3305-3317.
LI Hao,MA Xiaofei,HUO Tonglong,et al.Design and analysis of deployment mechanism for solid surface deployment antenna[J].Optics and Precision Engineering,2023,31(22):3305-3317.
李昊,马小飞,火统龙等.可展开固体反射面天线折展机构设计及分析[J].光学精密工程,2023,31(22):3305-3317. DOI: 10.37188/OPE.20233122.3305.
LI Hao,MA Xiaofei,HUO Tonglong,et al.Design and analysis of deployment mechanism for solid surface deployment antenna[J].Optics and Precision Engineering,2023,31(22):3305-3317. DOI: 10.37188/OPE.20233122.3305.
针对传统固面可展开天线中旁瓣绕双转轴独立折展造成的系统同步性差及可靠性低的问题,设计并分析了一种单自由度折展方案。首先提出了基于粒子群算法的收拢态位姿确定算法,结合等效轴角定理给出了单自由度旋转展开的参数确定方案;以相邻旁瓣运动轨迹为基础,结合变密度拓扑优化方法给出了反射器背架设计方案,分析结果表明本文所设计背架可使反射器热变形降低62.5%,基频提高了4倍,充分证明了背架设计的有效性。以一款10 m口径固面可展开天线为对象进行了折展机构设计,并分析了折展过程中运动学、动力学参数变化规律。基于螺旋理论对折展机构进行分析,得出了多种消极运动副引入方案,并最终选取RSPRR进行机构非过约束设计。分析结果表明,本文所述的固面可展开天线可以完成收拢态与展开态之间的切换,收纳率达到了0.384,折展过程平稳可靠,验证了该设计方案的可行性。同时,相关研究方法及结论可以为固面可展开天线的设计提供技术参考。
This study designs a deployment mechanism based on the Bennett mechanism to address the synchronization and reliability issues of solid surface deployment antennas (SSDAs) caused by independent rotation around two axes. First, a position determination algorithm for the antenna petal based on a particle swarm optimization algorithm is proposed. Combined with the axis-angle theorem, the parameters of uniaxial deployment are obtained, and the deployment mechanism based on the Bennett mechanism is designed. Furthermore, the design scheme of the petal frame is proposed with topology optimization methods based on the motion trajectories of adjacent petals. The analysis results show that the design frame can reduce the reflector deformation by 62.5% and enhance the fundamental frequency by four times, which fully proves the effectiveness of the frame design. Using a 10 m aperture SSDA as an example, the deployment mechanism is established, whereas the kinematic and dynamic parameters during the deployment process are analyzed. The deployment mechanism is further derived into a non-overconstrained mechanism by introducing negative kinematic pairs. The results show that the deployment process of SSDA is stable and reliable; the package ratio reaches 0.384. The research methods and conclusions in this study provide technical references for the design of SSDA.
固面可展开天线单自由度折展背架设计消极运动副
solid surface deployable antennauniaxial deploymentframe designnegative kinematic pair
李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717-731. doi: 10.12000/JR19085http://dx.doi.org/10.12000/JR19085
LI C S, YU Z, CHEN J. TN958 overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717-731.(in Chinese). doi: 10.12000/JR19085http://dx.doi.org/10.12000/JR19085
TENG F, WAN J X, LIU J. Review of terahertz antenna technology for science missions in space[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(2): 16-32. doi: 10.1109/maes.2022.3222291http://dx.doi.org/10.1109/maes.2022.3222291
DAVARIAN F, BABUSCIA A, BAKER J, et al. Improving small satellite communications in deep space—a review of the existing systems and technologies with recommendations for improvement. part I: direct to earth links and SmallSat telecommunications equipment[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(7): 8-25. doi: 10.1109/maes.2020.2980918http://dx.doi.org/10.1109/maes.2020.2980918
DUAN B Y. Large spaceborne deployable antennas (LSDAs)-a comprehensive summary[J]. Chinese Journal of Electronics, 2020, 29(1): 1-15. doi: 10.1049/cje.2019.09.001http://dx.doi.org/10.1049/cje.2019.09.001
CHEN C, DONG J, CHEN J, et al. Large spaceborne parabolic antenna: research progress.[J] Acta Aeronautica et Astronautica Sinica, 2021;42(1): 523833.
GÓMEZ-GUILLAMÓN BUENDÍA V, LIBERTO S, GOUSSETIS G, et al. Review of antenna technologies for very high frequency Data Exchange Systems[J]. International Journal of Satellite Communications and Networking, 2023, 41(2): 122-133. doi: 10.1002/sat.1428http://dx.doi.org/10.1002/sat.1428
刘荣强, 史创, 郭宏伟, 等. 空间可展开天线机构研究与展望[J]. 机械工程学报, 2020, 56(5): 1-12. doi: 10.3901/jme.2020.05.001http://dx.doi.org/10.3901/jme.2020.05.001
LIU R Q, SHI C, GUO H W, et al. Review of space deployable antenna mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(5): 1-12.(in Chinese). doi: 10.3901/jme.2020.05.001http://dx.doi.org/10.3901/jme.2020.05.001
马小飞, 李洋, 肖勇, 等. 大型空间可展开天线反射器研究现状与展望[J]. 空间电子技术, 2018, 15(2): 16-26. doi: 10.3969/j.issn.1674-7135.2018.02.003http://dx.doi.org/10.3969/j.issn.1674-7135.2018.02.003
MA X F, LI Y, XIAO Y, et al. Development and tendency of large space deployable antenna reflector[J]. Space Electronic Technology, 2018, 15(2): 16-26.(in Chinese). doi: 10.3969/j.issn.1674-7135.2018.02.003http://dx.doi.org/10.3969/j.issn.1674-7135.2018.02.003
CHANDRA M, KUMAR S, CHATTOPADHYAYA S, et al. A review on developments of deployable membrane-based reflector antennas[J]. Advances in Space Research, 2021, 68(9): 3749-3764. doi: 10.1016/j.asr.2021.06.051http://dx.doi.org/10.1016/j.asr.2021.06.051
刘丽坤, 周志成, 郑钢铁, 等. 大型网状可展开天线的动力学与控制研究进展[J]. 中国空间科学技术, 2014, 34(2): 1-12.
LIU L K, ZHOU Z C, ZHENG G T, et al. Advance of dynamics and control of the satellite with large mesh deployable antenna[J]. Chinese Space Science and Technology, 2014, 34(2): 1-12.(in Chinese)
郑士昆, 冀有志, 崔兆云, 等. 环境一号C星SAR天线设计与分析[J]. 雷达学报, 2014, 3(3): 266-273. doi: 10.3724/sp.j.1300.2014.14040http://dx.doi.org/10.3724/sp.j.1300.2014.14040
ZHENG S K, JI Y Z, CUI Z Y, et al. Design and analysis of HJ-1-C satellite SAR antenna[J]. Journal of Radars, 2014, 3(3): 266-273.(in Chinese). doi: 10.3724/sp.j.1300.2014.14040http://dx.doi.org/10.3724/sp.j.1300.2014.14040
唐雅琼, 李团结, 陈聪聪. 环形张拉式索网可展开天线创新设计与分析[J]. 西安电子科技大学学报, 2022, 49(4): 193-200.
TANG Y Q, LI T J, CHEN C C. Design and analysis of a new hoop tensegrity structure for space deployable antennas[J]. Journal of Xidian University, 2022, 49(4): 193-200.(in Chinese)
THOMAS M. Inflatable space structures[J]. IEEE Potentials, 1992, 11(4): 29-32. doi: 10.1109/45.207143http://dx.doi.org/10.1109/45.207143
周晓涛, 马小飞, 李欢笑. 柔性张拉薄膜可展开空间天线研究现状与发展趋势[J]. 中国空间科学技术, 2022, 42(4): 77-91.
ZHOU X T, MA X F, LI H X. Review of flexible tensioned thin-film deployable antennas[J]. Chinese Space Science and Technology, 2022, 42(4): 77-91.(in Chinese)
卫剑征, 苗常青, 杜星文. 充气平面天线结构展开过程仿真分析[J]. 哈尔滨工业大学学报, 2007, 39(9): 1398-1401, 1465. doi: 10.3321/j.issn:0367-6234.2007.09.013http://dx.doi.org/10.3321/j.issn:0367-6234.2007.09.013
WEI J Z, MIAO C Q, DU X W. Simulation analysis of deployment process of inflatable planar antenna structure[J]. Journal of Harbin Institute of Technology, 2007, 39(9): 1398-1401, 1465.(in Chinese). doi: 10.3321/j.issn:0367-6234.2007.09.013http://dx.doi.org/10.3321/j.issn:0367-6234.2007.09.013
ESCRIG F. Expandable space structures[J]. International Journal of Space Structures, 1985, 1(2): 79-91. doi: 10.1177/026635118500100203http://dx.doi.org/10.1177/026635118500100203
罗阿妮, 刘贺平, 李杨, 等. 花瓣式可展天线的结构分析[J]. 中国机械工程, 2012, 23(14): 1656-1658. doi: 10.3969/j.issn.1004-132X.2012.14.005http://dx.doi.org/10.3969/j.issn.1004-132X.2012.14.005
LUO A N, LIU H P, LI Y, et al. Structural analysis of flowerlike deployable antenna[J]. China Mechanical Engineering, 2012, 23(14): 1656-1658.(in Chinese). doi: 10.3969/j.issn.1004-132X.2012.14.005http://dx.doi.org/10.3969/j.issn.1004-132X.2012.14.005
刘荣强, 田大可, 邓宗全. 空间可展开天线结构的研究现状与展望[J]. 机械设计, 2010, 27(9): 1-10.
LIU R Q, TIAN D K, DENG Z Q. Research actuality and prospect of structure for space deployable antenna[J]. Journal of Machine Design, 2010, 27(9): 1-10.(in Chinese)
史创, 刘名利, 郭宏伟, 等. 大型二维多折展开平面天线机构设计及动力学特性分析[J]. 光学 精密工程, 2021, 29(12): 2868-2876. doi: 10.37188/OPE.20212912.2868http://dx.doi.org/10.37188/OPE.20212912.2868
SHI C, LIU M L, GUO H W, et al. Mechanism design and dynamic analysis of large-scale two-dimensional deployable planar antenna[J]. Opt. Precision Eng., 2021, 29(12): 2868-2876.(in Chinese). doi: 10.37188/OPE.20212912.2868http://dx.doi.org/10.37188/OPE.20212912.2868
田大可, 范小东, 金路, 等. 六棱柱模块化可展开天线形面精度分析[J]. 光学 精密工程, 2021, 29(12): 2855-2867. doi: 10.37188/OPE.20212912.2855http://dx.doi.org/10.37188/OPE.20212912.2855
TIAN D K, FAN X D, JIN L, et al. Surface accuracy analysis for hexagonal prism modular deployable antenna[J]. Opt. Precision Eng., 2021, 29(12): 2855-2867.(in Chinese). doi: 10.37188/OPE.20212912.2855http://dx.doi.org/10.37188/OPE.20212912.2855
NAKANO H, YAMAUCHI J, HASHIMOTO S. Sunflower spiral antenna[J]. IEICE TRANSACTIONS (1976-1990), 1981, 64(12):763-769.
GUEST S D, PELLEGRINO S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2): 103-113. doi: 10.1016/0094-5765(96)00009-4http://dx.doi.org/10.1016/0094-5765(96)00009-4
CHAE S, YEOH, LEE SY, et al. Deployment behaviors of CFRP reflector under zero-gravity environment[J]. International Journal of Aerospace System Engineering, 2020, 7(1):1-6.
BUJAKAS V I, KAMENSKY A A. Self-Setting Locks for Petal Type Deployable Space Reflector[M]. Mechanisms and Machine Science. Cham: Springer International Publishing, 2016: 177-187. doi: 10.1007/978-3-319-45387-3_16http://dx.doi.org/10.1007/978-3-319-45387-3_16
HUANG H, CHENG Q, ZHENG L, et al. Development for petal-type deployable solid-surface reflector by uniaxial rotation mechanism[J]. Acta Astronautica, 2021, 178: 511-521. doi: 10.1016/j.actaastro.2020.09.037http://dx.doi.org/10.1016/j.actaastro.2020.09.037
徐彦, 成强, 黄河, 等. 绕单轴旋转的固面可展开天线展开过程研究[J]. 工程设计学报, 2020, 27(3): 301-306. doi: 10.3785/j.issn.1006-754X.2020.00.048http://dx.doi.org/10.3785/j.issn.1006-754X.2020.00.048
XU Y, CHENG Q, HUANG H, et al. Study of deploying process of solid-surface deployable antenna rotating along a single axis[J]. Chinese Journal of Engineering Design, 2020, 27(3): 301-306.(in Chinese). doi: 10.3785/j.issn.1006-754X.2020.00.048http://dx.doi.org/10.3785/j.issn.1006-754X.2020.00.048
HUANG H, GUAN FL, PAN LL, et al. Design and deploying study of a new petal-type deployable solid surface antenna[J]. Acta Astronautica, 2018, 148: 99-110. doi: 10.1016/j.actaastro.2018.04.042http://dx.doi.org/10.1016/j.actaastro.2018.04.042
TAN G, DUAN X, NIU D, et al. Visual synthesis of uniaxial synchronous deployment mechanisms for solid-surface deployable antennas[J]. Mechanism and Machine Theory, 2022, 178: 105073. doi: 10.1016/j.mechmachtheory.2022.105073http://dx.doi.org/10.1016/j.mechmachtheory.2022.105073
谭国栋. 新型固面可展开天线的机构设计与优化[D]. 西安:西安电子科技大学, 2019.
TAN G D. The Structural Design and Optimization for a New Solid Surface Deployable Antenna[D]. Xi'an: Xidian University, 2019.
马军, 段学超, 谭国栋. 基于Bennett衍生机构的固面可展开天线设计[J]. 电子机械工程, 2023, 39(2): 5-9.
MA J, DUAN X C, TAN G D. Design of solid surface deployable antenna based on Bennett derivative mechanism[J]. Electro-Mechanical Engineering, 2023, 39(2): 5-9.(in Chinese)
ELBES M, ALZUBI S, KANAN T, et al. A survey on particle swarm optimization with emphasis on engineering and network applications[J]. Evolutionary Intelligence, 2019, 12(2): 113-129. doi: 10.1007/s12065-019-00210-zhttp://dx.doi.org/10.1007/s12065-019-00210-z
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构