浏览全部资源
扫码关注微信
1.中国工程物理研究院 总体工程研究所,四川 绵阳 621999
2.中国工程物理研究院,四川 绵阳 621999
[ "毛勇建(1976-),男,四川简阳人,博士,研究员,2010年于西北工业大学获得博士学位,主要从事环境试验技术与冲击动力学相关研究。E-mail: maoyj@caep.cn" ]
[ "何颖波(1966-),男,四川仪陇人,硕士,研究员,1986年于北京大学获得学士学位,1989年于北京科技大学获得硕士学位,主要从事结构与材料冲击动力学研究、重大装备研制等相关工作。E-mail: heyb@caep.cn" ]
收稿日期:2023-04-13,
修回日期:2023-06-13,
纸质出版日期:2023-11-25
移动端阅览
毛勇建,李明海,何颖波等.适应动态加速度场的压电-液压串联复合激振装置研制[J].光学精密工程,2023,31(22):3318-3330.
MAO Yongjian,LI Minghai,HE Yingbo,et al.Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J].Optics and Precision Engineering,2023,31(22):3318-3330.
毛勇建,李明海,何颖波等.适应动态加速度场的压电-液压串联复合激振装置研制[J].光学精密工程,2023,31(22):3318-3330. DOI: 10.37188/OPE.20233122.3318.
MAO Yongjian,LI Minghai,HE Yingbo,et al.Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J].Optics and Precision Engineering,2023,31(22):3318-3330. DOI: 10.37188/OPE.20233122.3318.
为了实现动态加速度与时变振动环境的综合模拟,研制了一套适应动态加速度场的轻量宽频激振装置。首先提出了压电-液压串联复合激振方法和装置构型,解决了传统激振方法“宽频不轻量、轻量不宽频”的难题。设计了六单元并联压电激振模块,建立了精密装调工艺,并联激振效率达到74.2%。为满足动态加速度环境下的宽频激振需求,提出液压内嵌式定中方案,研制了具有“缸中缸”构型的液压激振模块。基于分频器,提出了串联复合激振系统的分频控制方法,实现了压电、液压激振模块的协调工作、均衡出力。以力平衡控制结合零位移反馈补偿控制,提出了液压激振模块定中控制方法,实现了动态加速度环境下的精确定中。提出了变增益、长时波形再现两种时变振动控制方法,研制了一体化的控制系统。测试结果表明,串联复合激振装置在离心加速度不低于60
g
、加速度变化率不低于15
g
/s工况下,分别实现了50 kg负载下的6
g
rms
振动加速度、10~2 000 Hz频率范围的宽频激振。该装置已应用于多项惯性器件、组件和系统的环境试验考核,载荷控制效果良好。相比飞行试验,本文成果为飞行器制导、控制系统功能性能考核提供了高效经济的实验室手段,特别在大样本数据获取方面具有优势。
A light-weight and wide-bandwidth vibration exciter operating in dynamic overload environments was developed to conduct combined simulations of dynamic overload and time-varying vibration. A piezoelectric-hydraulic series hybrid vibration excitation method and corresponding configuration are proposed to solve the problem of narrow bandwidth with light weight or heavy weight with wide bandwidth. A six-element piezoelectric parallel excitation module was designed and the corresponding precise assembly technology was built, achieving a parallel excitation efficiency of 74.2%. A hydraulic embedded centering method is also proposed for the hydraulic actuator to operate in dynamic overload environments. In addition, a hydraulic excitation module with a novel cylinder-in-cylinder configuration was developed. The frequency-division control method for series hybrid excitation systems was designed based on a frequency divider, with the hydraulic and piezoelectric vibration excitation modules working coordinately and loading with equilibrium. Combining force balance control with zero-displacement feedback compensation, a centering control method was designed for the hydraulic excitation module. Thus, precise centering in dynamic overloads was accomplished. Two time-varying vibration control methods, namely variable gain and long-duration waveform replication methods, are proposed, and the integrative control system was developed as well. Performance tests show that the developed hydraulic-piezoelectric series hybrid vibration exciter features excitation abilities of acceleration over 6
g
rms
and frequency band covering 10-2 000 Hz for a payload over 50 kg in centrifugal overload exceeding 60
g
and overload rate exceeding 15
g
/s, respectively. The exciter was installed on a dynamic centrifuge and applied in a number of tests for inertial sensors, assemblies, and systems with good load control effects. In comparison to real flight tests, the dynamic overload-vibration simulation technique presented in this paper provides a more efficient and more economical laboratory approach for testing functional properties of guidance and control systems of aircrafts and spacecrafts, especially for large sample test data accumulation.
朱长春 , 周桐 , 胡绍全 , 等 . 典型结构振动过载综合环境动态响应实验研究 [J]. 振动工程学报 , 2014 , 27 ( 2 ): 193 - 200 . doi: 10.3969/j.issn.1004-4523.2014.02.006 http://dx.doi.org/10.3969/j.issn.1004-4523.2014.02.006
ZHU C C , ZHOU T , HU S Q , et al . Experimental research on the dynamical response feature of a typical structure under vibration and over loading compound environment [J]. Journal of Vibration Engineering , 2014 , 27 ( 2 ): 193 - 200 . (in Chinese) . doi: 10.3969/j.issn.1004-4523.2014.02.006 http://dx.doi.org/10.3969/j.issn.1004-4523.2014.02.006
周桐 , 张志旭 , 任万发 , 等 . 典型结构振动-加速度综合环境试验研究 [J]. 装备环境工程 , 2015 , 12 ( 5 ): 50 - 55 . doi: 10.7643/issn.1672-9242.2015.05.008 http://dx.doi.org/10.7643/issn.1672-9242.2015.05.008
ZHOU T , ZHANG Z X , REN W F , et al . Experimental research on typical structure under vibration-acceleration combined environment [J]. Equipment Environmental Engineering , 2015 , 12 ( 5 ): 50 - 55 . (in Chinese) . doi: 10.7643/issn.1672-9242.2015.05.008 http://dx.doi.org/10.7643/issn.1672-9242.2015.05.008
ADAMS P H , AULT R L , FULTON D L . Sandia National Laboratories 8.8-Metre(29-Foot) and 10.7-Metre (35-Foot) Centrifuge Facilities [R]. Albuquerque NM, USA : Sandia National Labs , 1980 [PDF] Sandia National Laboratories 8. 8 metre (29-foot) and 10. 7-metre (35-foot) centrifuge facilities | Semantic Scholar. doi: 10.2172/5153410 http://dx.doi.org/10.2172/5153410
JEPSEN R A , ROMERO E F . Testing in a combined vibration and acceleration environment [C]. Proceedings of 23rd Conference and Exposition on Structural Dynamics (IMAC XXIII) , Orlando , 2005 .
VANGOETHEM D , JEPSEN R , ROMERO E . Vibrafuge: Re-Entry and Launch Test Simulation in a Combined Linear Acceleration and Vibration Environment [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada. Reston, Virigina : AIAA , 2006 : 1318 . doi: 10.2514/6.2006-1318 http://dx.doi.org/10.2514/6.2006-1318
RHIEN P . New weapons testing produces richer data, saves cost [EB/OL]. ( 2021-07-16 )[ 2023-04-06 ]. Sandia Lab News, 2021 , https://www.sandia.gov/labnews /2021/07/16/new-weapons-testing-produces-richer-data-saves-cost/ https://www.sandia.gov/labnews/2021/07/16/new-weapons-testing-produces-richer-data-saves-cost/
DESHLER T . Labs accomplishments 2020 [EB/OL]. ( 2020-03-10 ) [ 2023-04-06 ]. https://www.sandia.gov/news/publications/labs-accomplishments/issue/lab-accomplishments-2020/ https://www.sandia.gov/news/publications/labs-accomplishments/issue/lab-accomplishments-2020/
吴建国 , 李海波 , 张琪 , 等 . 液浮陀螺仪过载振动复合环境试验 [J]. 中国惯性技术学报 , 2015 , 23 ( 6 ): 840 - 844 . doi: 10.13695/j.cnki.12-1222/o3.2015.06.025 http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2015.06.025
WU J G , LI H B , ZHANG Q , et al . Environment effect and adaptability test on spaceflight fluid floating gyro under overload+vibration [J]. Journal of Chinese Inertial Technology , 2015 , 23 ( 6 ): 840 - 844 . (in Chinese) . doi: 10.13695/j.cnki.12-1222/o3.2015.06.025 http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2015.06.025
何阳 , 蒋春梅 , 张建全 . 振动离心复合试验系统发展概述 [J]. 装备环境工程 , 2016 , 13 ( 6 ): 95 - 103 . doi: 10.7643/issn.1672-9242.2016.06.017 http://dx.doi.org/10.7643/issn.1672-9242.2016.06.017
HE Y , JIANG C M , ZHANG J Q . A survey of combined acceleration and vibration environment simulator [J]. Equipment Environmental Engineering , 2016 , 13 ( 6 ): 95 - 103 . (in Chinese) . doi: 10.7643/issn.1672-9242.2016.06.017 http://dx.doi.org/10.7643/issn.1672-9242.2016.06.017
董龙雷 , 闫桂荣 , 朱先辉 , 等 . 离心力场中振动台与柔性梁的运动耦合分析 [J]. 机械工程学报 , 2001 , 37 ( 6 ): 29 - 33 . doi: 10.3321/j.issn:0577-6686.2001.06.007 http://dx.doi.org/10.3321/j.issn:0577-6686.2001.06.007
DONG L L , YAN G R , ZHU X H , et al . Movement coupling analysis of vibrator and flexible base in compound environment [J]. Chinese Journal of Mechanical Engineering , 2001 , 37 ( 6 ): 29 - 33 . (in Chinese) . doi: 10.3321/j.issn:0577-6686.2001.06.007 http://dx.doi.org/10.3321/j.issn:0577-6686.2001.06.007
董龙雷 , 闫桂荣 , 余建军 , 等 . 离心机振动台复合环境实验系统的隔振研究 [J]. 应用力学学报 , 2002 , 19 ( 1 ): 23 - 26 . doi: 10.3969/j.issn.1000-4939.2002.01.007 http://dx.doi.org/10.3969/j.issn.1000-4939.2002.01.007
DONG L L , YAN G R , YU J J , et al . Vibration isolation of the combined environments test system with centrifuge and vibration table [J]. Chinese Journal of Applied Mechanics , 2002 , 19 ( 1 ): 23 - 26 . (in Chinese) . doi: 10.3969/j.issn.1000-4939.2002.01.007 http://dx.doi.org/10.3969/j.issn.1000-4939.2002.01.007
徐冠华 . 动力学综合环境试验若干理论及技术问题的研究 [D]. 杭州 : 浙江大学 , 2014 .
XU G H . Research on Some Theoretical and Technical Problems of Dynamic Comprehensive Environmental Testing [D]. Hangzhou : Zhejiang University , 2014 . (in Chinese)
刘占芳 , 郭小炜 . 双自由度离心振动系统的动力耦合分析 [J]. 振动工程学报 , 2013 , 26 ( 3 ): 411 - 417 . doi: 10.3969/j.issn.1004-4523.2013.03.015 http://dx.doi.org/10.3969/j.issn.1004-4523.2013.03.015
LIU Z F , GUO X W . Dynamic coupled analysis on centrifugal vibration system with two degrees of freedom [J]. Journal of Vibration Engineering , 2013 , 26 ( 3 ): 411 - 417 . (in Chinese) . doi: 10.3969/j.issn.1004-4523.2013.03.015 http://dx.doi.org/10.3969/j.issn.1004-4523.2013.03.015
欧峰 , 陈颖 , 陈洪 , 等 . 基于离心机平台的复合环境试验系统综述 [J]. 装备环境工程 , 2015 , 12 ( 5 ): 28 - 33 . doi: 10.7643/issn.1672-9242.2015.05.004 http://dx.doi.org/10.7643/issn.1672-9242.2015.05.004
OU F , CHEN Y , CHEN H , et al . Review of the compound environment test system based on centrifuge platform [J]. Equipment Environmental Engineering , 2015 , 12 ( 5 ): 28 - 33 . (in Chinese) . doi: 10.7643/issn.1672-9242.2015.05.004 http://dx.doi.org/10.7643/issn.1672-9242.2015.05.004
谢海波 , 卢俊廷 , 杜泽锋 , 等 . 离心机振动台设计与控制策略研究 [J]. 液压与气动 , 2019 ( 5 ): 81 - 86 . doi: 10.11832/j.issn.1000-4858.2019.05.012 http://dx.doi.org/10.11832/j.issn.1000-4858.2019.05.012
XIE H B , LU J T , DU Z F , et al . Design on centrifuge shaker and research on control strategy [J]. Chinese Hydraulics & Pneumatics , 2019 ( 5 ): 81 - 86 . (in Chinese) . doi: 10.11832/j.issn.1000-4858.2019.05.012 http://dx.doi.org/10.11832/j.issn.1000-4858.2019.05.012
陈云敏 , 韩超 , 凌道盛 , 等 . ZJU400离心机研制及其振动台性能评价 [J]. 岩土工程学报 , 2011 , 33 ( 12 ): 1887 - 1894 .
CHEN Y M , HAN C , LING D S , et al . Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system [J]. Chinese Journal of Geotechnical Engineering , 2011 , 33 ( 12 ): 1887 - 1894 . (in Chinese)
吴志刚 , 陈敏 . 压电精密驱动柔性微夹钳设计 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 398 - 404 .
WU Z G , CHEN M . Design of flexure micro-gripper precision-driven by piezoceramics [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 398 - 404 . (in Chinese)
胡逸凡 , 章海军 , 倪凯佳 . 三角放大型压电陶瓷微纳米驱动机构 [J]. 光学 精密工程 , 2022 , 30 ( 17 ): 2094 - 2099 . doi: 10.37188/OPE.20223000.0223 http://dx.doi.org/10.37188/OPE.20223000.0223
HU Y F , ZHANG H J , NI K J . Mini-piezo-element drive microactuator based on triangular amplification [J]. Opt. Precision Eng. , 2022 , 30 ( 17 ): 2094 - 2099 . (in Chinese) . doi: 10.37188/OPE.20223000.0223 http://dx.doi.org/10.37188/OPE.20223000.0223
王耿 , 魏维宁 , 代军 , 等 . 线性偏摆复合型压电微动平台 [J]. 光学 精密工程 , 2022 , 30 ( 9 ): 1058 - 1070 . doi: 10.37188/OPE.20223009.1058 http://dx.doi.org/10.37188/OPE.20223009.1058
WANG G , WEI W N , DAI J , et al . Linear yaw compound piezoelectric micro-motion platform [J]. Opt. Precision Eng. , 2022 , 30 ( 9 ): 1058 - 1070 . (in Chinese) . doi: 10.37188/OPE.20223009.1058 http://dx.doi.org/10.37188/OPE.20223009.1058
黄涛 , 罗治洪 , 陶桂宝 , 等 . 压电定位平台Hammerstein建模与反馈线性化控制 [J]. 光学 精密工程 , 2022 , 30 ( 14 ): 1716 - 1724 . doi: 10.37188/OPE.20223014.1716 http://dx.doi.org/10.37188/OPE.20223014.1716
HUANG T , LUO Z H , TAO G B , et al . Hammerstein modeling and feedback linearization control for piezoelectric positioning stage [J]. Opt. Precision Eng. , 2022 , 30 ( 14 ): 1716 - 1724 . (in Chinese) . doi: 10.37188/OPE.20223014.1716 http://dx.doi.org/10.37188/OPE.20223014.1716
马天兵 , 陈南南 , 吴晓东 , 等 . Z型压电振动能量收集装置 [J]. 光学 精密工程 , 2019 , 27 ( 9 ): 1968 - 1980 . doi: 10.3788/ope.20192709.1968 http://dx.doi.org/10.3788/ope.20192709.1968
MA T B , CHEN N N , WU X D , et al . Z-type piezoelectric vibration energy harvesting device [J]. Opt. Precision Eng. , 2019 , 27( 9 ) 1968 - 1980 (in Chinese) . doi: 10.3788/ope.20192709.1968 http://dx.doi.org/10.3788/ope.20192709.1968
王淑云 , 严梦加 , 阚君武 , 等 . 间接激励式压电风力俘能器 [J]. 光学 精密工程 , 2019 , 27 ( 5 ): 1121 - 1127 . doi: 10.3788/ope.20192705.1121 http://dx.doi.org/10.3788/ope.20192705.1121
WANG S Y , YAN M J , KAN J W , et al . Study of piezoelectric wind energy harvester with indirect excitation [J]. Opt. Precision Eng. , 2019 , 27 ( 5 ): 1121 - 1127 . (in Chinese) . doi: 10.3788/ope.20192705.1121 http://dx.doi.org/10.3788/ope.20192705.1121
SUN L F , LI W J , WU Y Z , et al . Active vibration control of a conical shell using piezoelectric ceramics [J]. Journal of Low Frequency Noise, Vibration and Active Control , 2017 , 36 ( 4 ): 366 - 375 . doi: 10.1177/1461348417744304 http://dx.doi.org/10.1177/1461348417744304
HUANG Z C , MAO Y H , DAI A N , et al . Active vibration control of piezoelectric sandwich plates [J]. Materials , 2022 , 15 ( 11 ): 3907 . doi: 10.3390/ma15113907 http://dx.doi.org/10.3390/ma15113907
凌明祥 , 刘谦 , 曹军义 , 等 . 压电位移放大机构的力学解析模型及有限元分析 [J]. 光学 精密工程 , 2016 , 24 ( 4 ): 812 - 818 . doi: 10.3788/ope.20162404.0812 http://dx.doi.org/10.3788/ope.20162404.0812
LING M X , LIU Q , CAO J Y , et al . Analytical model and finite element analysis of piezoelectric displacement amplification mechanism [J]. Opt. Precision Eng. , 2016 , 24 ( 4 ): 812 - 818 . (in Chinese) . doi: 10.3788/ope.20162404.0812 http://dx.doi.org/10.3788/ope.20162404.0812
LING M . A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers [J]. Mechanical Systems and Signal Processing , 2019 , 119 : 486 - 500 . doi: 10.1016/j.ymssp.2018.10.007 http://dx.doi.org/10.1016/j.ymssp.2018.10.007
LING M , CAO J , PEHRSON N . Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model [J]. Precision Engineering , 2019 , 57 : 149 - 161 . doi: 10.1016/j.precisioneng.2019.04.004 http://dx.doi.org/10.1016/j.precisioneng.2019.04.004
邱勇 , 毛勇建 , 蒋华兵 . 实验室力学与热学环境试验技术 [M]. 北京 : 科学出版社 , 2021 .
QIU Y , MAO Y J , JIANG H B . Laboratory Test Techniques for Mechanical and Thermal Environment Simulation [M]. Beijing : Science Press , 2021 . (in Chinese)
严侠 , 何颖波 , 毛勇建 , 等 . 一种适用于串联型激振系统的分频振动控制方法 : CN202211441077.3 [P]. 2023-03-14 .
YAN X , HE Y B , MAO Y J , et al . A Frequency Dividing Control Method for Hybrid Excitation Systems : CN202211441077.3 [P]. 2023-03-14 (in Chinese)
郑敏 , 严侠 , 邓婷 , 等 . 一种液压作动器支撑力平衡及工作位定中控制方法 : CN202011452313.2 [P]. 2022-07-22 .
ZHENG M , YAN X , DENG T , et al . Supporting Force Balance and Working Position Centering Control Method for Hydraulic Actuator : CN2020 11452313.2 [P]. 2022-07-22 . (in Chinese)
邓婷 , 严侠 , 王宇飞 . 一种非平稳随机振动试验控制系统设计 [J]. 装备环境工程 , 2022 , 19 ( 3 ): 94 - 100 . doi: 10.7643/issn.1672-9242.2022.03.014 http://dx.doi.org/10.7643/issn.1672-9242.2022.03.014
DENG T , YAN X , WANG Y F . A control system design of non-stationary random vibration experiment [J]. Equipment Environmental Engineering , 2022 , 19 ( 3 ): 94 - 100 . (in Chinese) . doi: 10.7643/issn.1672-9242.2022.03.014 http://dx.doi.org/10.7643/issn.1672-9242.2022.03.014
康甜 , 欧峰 , 严侠 , 等 . 变均方根随机振动? 变加速度离心复合试验 [J]. 航天器环境工程 , 2022 , 39 ( 4 ): 395 - 400 .
KANG T , OU F , YAN X , et al . Combined variable RMS random vibration and variable centrifugal acceleration test [J]. Spacecraft Environment Engineering , 2022 , 39 ( 4 ): 395 - 400 . (in Chinese)
0
浏览量
389
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构