1.中国工程物理研究院 总体工程研究所,四川 绵阳 621999
2.中国工程物理研究院,四川 绵阳 621999
[ "毛勇建(1976-),男,四川简阳人,博士,研究员,2010年于西北工业大学获得博士学位,主要从事环境试验技术与冲击动力学相关研究。E-mail: maoyj@caep.cn" ]
[ "何颖波(1966-),男,四川仪陇人,硕士,研究员,1986年于北京大学获得学士学位,1989年于北京科技大学获得硕士学位,主要从事结构与材料冲击动力学研究、重大装备研制等相关工作。E-mail: heyb@caep.cn" ]
扫 描 看 全 文
毛勇建,李明海,何颖波等.适应动态加速度场的压电-液压串联复合激振装置研制[J].光学精密工程,2023,31(22):3318-3330.
MAO Yongjian,LI Minghai,HE Yingbo,et al.Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J].Optics and Precision Engineering,2023,31(22):3318-3330.
毛勇建,李明海,何颖波等.适应动态加速度场的压电-液压串联复合激振装置研制[J].光学精密工程,2023,31(22):3318-3330. DOI: 10.37188/OPE.20233122.3318.
MAO Yongjian,LI Minghai,HE Yingbo,et al.Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J].Optics and Precision Engineering,2023,31(22):3318-3330. DOI: 10.37188/OPE.20233122.3318.
为了实现动态加速度与时变振动环境的综合模拟,研制了一套适应动态加速度场的轻量宽频激振装置。首先提出了压电-液压串联复合激振方法和装置构型,解决了传统激振方法“宽频不轻量、轻量不宽频”的难题。设计了六单元并联压电激振模块,建立了精密装调工艺,并联激振效率达到74.2%。为满足动态加速度环境下的宽频激振需求,提出液压内嵌式定中方案,研制了具有“缸中缸”构型的液压激振模块。基于分频器,提出了串联复合激振系统的分频控制方法,实现了压电、液压激振模块的协调工作、均衡出力。以力平衡控制结合零位移反馈补偿控制,提出了液压激振模块定中控制方法,实现了动态加速度环境下的精确定中。提出了变增益、长时波形再现两种时变振动控制方法,研制了一体化的控制系统。测试结果表明,串联复合激振装置在离心加速度不低于60 ,g,、加速度变化率不低于15 ,g,/s工况下,分别实现了50 kg负载下的6 ,g,rms,振动加速度、10~2 000 Hz频率范围的宽频激振。该装置已应用于多项惯性器件、组件和系统的环境试验考核,载荷控制效果良好。相比飞行试验,本文成果为飞行器制导、控制系统功能性能考核提供了高效经济的实验室手段,特别在大样本数据获取方面具有优势。
A light-weight and wide-bandwidth vibration exciter operating in dynamic overload environments was developed to conduct combined simulations of dynamic overload and time-varying vibration. A piezoelectric-hydraulic series hybrid vibration excitation method and corresponding configuration are proposed to solve the problem of narrow bandwidth with light weight or heavy weight with wide bandwidth. A six-element piezoelectric parallel excitation module was designed and the corresponding precise assembly technology was built, achieving a parallel excitation efficiency of 74.2%. A hydraulic embedded centering method is also proposed for the hydraulic actuator to operate in dynamic overload environments. In addition, a hydraulic excitation module with a novel cylinder-in-cylinder configuration was developed. The frequency-division control method for series hybrid excitation systems was designed based on a frequency divider, with the hydraulic and piezoelectric vibration excitation modules working coordinately and loading with equilibrium. Combining force balance control with zero-displacement feedback compensation, a centering control method was designed for the hydraulic excitation module. Thus, precise centering in dynamic overloads was accomplished. Two time-varying vibration control methods, namely variable gain and long-duration waveform replication methods, are proposed, and the integrative control system was developed as well. Performance tests show that the developed hydraulic-piezoelectric series hybrid vibration exciter features excitation abilities of acceleration over 6 ,g,rms, and frequency band covering 10-2 000 Hz for a payload over 50 kg in centrifugal overload exceeding 60 ,g, and overload rate exceeding 15 ,g,/s, respectively. The exciter was installed on a dynamic centrifuge and applied in a number of tests for inertial sensors, assemblies, and systems with good load control effects. In comparison to real flight tests, the dynamic overload-vibration simulation technique presented in this paper provides a more efficient and more economical laboratory approach for testing functional properties of guidance and control systems of aircrafts and spacecrafts, especially for large sample test data accumulation.
压电激振液压激振柔性机构微位移放大离心机
hydraulic excitationpiezoelectric excitationcompliant mechanismmicro-displacement amplificationcentrifuge
朱长春, 周桐, 胡绍全, 等. 典型结构振动过载综合环境动态响应实验研究[J]. 振动工程学报, 2014, 27(2): 193-200. doi: 10.3969/j.issn.1004-4523.2014.02.006http://dx.doi.org/10.3969/j.issn.1004-4523.2014.02.006
ZHU C C, ZHOU T, HU S Q, et al. Experimental research on the dynamical response feature of a typical structure under vibration and over loading compound environment[J]. Journal of Vibration Engineering, 2014, 27(2): 193-200. (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.02.006http://dx.doi.org/10.3969/j.issn.1004-4523.2014.02.006
周桐, 张志旭, 任万发, 等. 典型结构振动-加速度综合环境试验研究[J]. 装备环境工程, 2015, 12(5): 50-55. doi: 10.7643/issn.1672-9242.2015.05.008http://dx.doi.org/10.7643/issn.1672-9242.2015.05.008
ZHOU T, ZHANG Z X, REN W F, et al. Experimental research on typical structure under vibration-acceleration combined environment[J]. Equipment Environmental Engineering, 2015, 12(5): 50-55.(in Chinese). doi: 10.7643/issn.1672-9242.2015.05.008http://dx.doi.org/10.7643/issn.1672-9242.2015.05.008
ADAMS P H, AULT R L, FULTON D L. Sandia National Laboratories 8.8-Metre(29-Foot) and 10.7-Metre (35-Foot) Centrifuge Facilities[R]. Albuquerque NM, USA: Sandia National Labs, 1980 [PDF] Sandia National Laboratories 8. 8 metre (29-foot) and 10. 7-metre (35-foot) centrifuge facilities | Semantic Scholar. doi: 10.2172/5153410http://dx.doi.org/10.2172/5153410
JEPSEN R A, ROMERO E F. Testing in a combined vibration and acceleration environment[C]. Proceedings of 23rd Conference and Exposition on Structural Dynamics (IMAC XXIII), Orlando, 2005.
VANGOETHEM D, JEPSEN R, ROMERO E. Vibrafuge: Re-Entry and Launch Test Simulation in a Combined Linear Acceleration and Vibration Environment[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada. Reston, Virigina: AIAA, 2006: 1318. doi: 10.2514/6.2006-1318http://dx.doi.org/10.2514/6.2006-1318
RHIEN P. New weapons testing produces richer data, saves cost[EB/OL]. (2021-07-16)[2023-04-06]. Sandia Lab News, 2021, https://www.sandia.gov/labnews /2021/07/16/new-weapons-testing-produces-richer-data-saves-cost/https://www.sandia.gov/labnews/2021/07/16/new-weapons-testing-produces-richer-data-saves-cost/
DESHLER T. Labs accomplishments 2020[EB/OL]. (2020-03-10) [2023-04-06]. https://www.sandia.gov/news/publications/labs-accomplishments/issue/lab-accomplishments-2020/https://www.sandia.gov/news/publications/labs-accomplishments/issue/lab-accomplishments-2020/
吴建国, 李海波, 张琪, 等. 液浮陀螺仪过载振动复合环境试验[J]. 中国惯性技术学报, 2015, 23(6): 840-844. doi: 10.13695/j.cnki.12-1222/o3.2015.06.025http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2015.06.025
WU J G, LI H B, ZHANG Q, et al. Environment effect and adaptability test on spaceflight fluid floating gyro under overload+vibration[J]. Journal of Chinese Inertial Technology, 2015, 23(6): 840-844.(in Chinese). doi: 10.13695/j.cnki.12-1222/o3.2015.06.025http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2015.06.025
何阳, 蒋春梅, 张建全. 振动离心复合试验系统发展概述[J]. 装备环境工程, 2016, 13(6): 95-103. doi: 10.7643/issn.1672-9242.2016.06.017http://dx.doi.org/10.7643/issn.1672-9242.2016.06.017
HE Y, JIANG C M, ZHANG J Q. A survey of combined acceleration and vibration environment simulator[J]. Equipment Environmental Engineering, 2016, 13(6): 95-103.(in Chinese). doi: 10.7643/issn.1672-9242.2016.06.017http://dx.doi.org/10.7643/issn.1672-9242.2016.06.017
董龙雷, 闫桂荣, 朱先辉, 等. 离心力场中振动台与柔性梁的运动耦合分析[J]. 机械工程学报, 2001, 37(6): 29-33. doi: 10.3321/j.issn:0577-6686.2001.06.007http://dx.doi.org/10.3321/j.issn:0577-6686.2001.06.007
DONG L L, YAN G R, ZHU X H, et al. Movement coupling analysis of vibrator and flexible base in compound environment[J]. Chinese Journal of Mechanical Engineering, 2001, 37(6): 29-33.(in Chinese). doi: 10.3321/j.issn:0577-6686.2001.06.007http://dx.doi.org/10.3321/j.issn:0577-6686.2001.06.007
董龙雷, 闫桂荣, 余建军, 等. 离心机振动台复合环境实验系统的隔振研究[J]. 应用力学学报, 2002, 19(1): 23-26. doi: 10.3969/j.issn.1000-4939.2002.01.007http://dx.doi.org/10.3969/j.issn.1000-4939.2002.01.007
DONG L L, YAN G R, YU J J, et al. Vibration isolation of the combined environments test system with centrifuge and vibration table[J]. Chinese Journal of Applied Mechanics, 2002, 19(1): 23-26.(in Chinese). doi: 10.3969/j.issn.1000-4939.2002.01.007http://dx.doi.org/10.3969/j.issn.1000-4939.2002.01.007
徐冠华. 动力学综合环境试验若干理论及技术问题的研究[D]. 杭州: 浙江大学, 2014.
XU G H. Research on Some Theoretical and Technical Problems of Dynamic Comprehensive Environmental Testing[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
刘占芳, 郭小炜. 双自由度离心振动系统的动力耦合分析[J]. 振动工程学报, 2013, 26(3): 411-417. doi: 10.3969/j.issn.1004-4523.2013.03.015http://dx.doi.org/10.3969/j.issn.1004-4523.2013.03.015
LIU Z F, GUO X W. Dynamic coupled analysis on centrifugal vibration system with two degrees of freedom[J]. Journal of Vibration Engineering, 2013, 26(3): 411-417.(in Chinese). doi: 10.3969/j.issn.1004-4523.2013.03.015http://dx.doi.org/10.3969/j.issn.1004-4523.2013.03.015
欧峰, 陈颖, 陈洪, 等. 基于离心机平台的复合环境试验系统综述[J]. 装备环境工程, 2015, 12(5): 28-33. doi: 10.7643/issn.1672-9242.2015.05.004http://dx.doi.org/10.7643/issn.1672-9242.2015.05.004
OU F, CHEN Y, CHEN H, et al. Review of the compound environment test system based on centrifuge platform[J]. Equipment Environmental Engineering, 2015, 12(5): 28-33.(in Chinese). doi: 10.7643/issn.1672-9242.2015.05.004http://dx.doi.org/10.7643/issn.1672-9242.2015.05.004
谢海波, 卢俊廷, 杜泽锋, 等. 离心机振动台设计与控制策略研究[J]. 液压与气动, 2019(5): 81-86. doi: 10.11832/j.issn.1000-4858.2019.05.012http://dx.doi.org/10.11832/j.issn.1000-4858.2019.05.012
XIE H B, LU J T, DU Z F, et al. Design on centrifuge shaker and research on control strategy[J]. Chinese Hydraulics & Pneumatics, 2019(5): 81-86.(in Chinese). doi: 10.11832/j.issn.1000-4858.2019.05.012http://dx.doi.org/10.11832/j.issn.1000-4858.2019.05.012
陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894.
CHEN Y M, HAN C, LING D S, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894.(in Chinese)
吴志刚, 陈敏. 压电精密驱动柔性微夹钳设计[J]. 光学 精密工程, 2020, 28(2): 398-404.
WU Z G, CHEN M. Design of flexure micro-gripper precision-driven by piezoceramics[J]. Opt. Precision Eng., 2020, 28(2): 398-404.(in Chinese)
胡逸凡, 章海军, 倪凯佳. 三角放大型压电陶瓷微纳米驱动机构[J]. 光学 精密工程, 2022, 30(17): 2094-2099. doi: 10.37188/OPE.20223000.0223http://dx.doi.org/10.37188/OPE.20223000.0223
HU Y F, ZHANG H J, NI K J. Mini-piezo-element drive microactuator based on triangular amplification[J]. Opt. Precision Eng., 2022, 30(17): 2094-2099.(in Chinese). doi: 10.37188/OPE.20223000.0223http://dx.doi.org/10.37188/OPE.20223000.0223
王耿, 魏维宁, 代军, 等. 线性偏摆复合型压电微动平台[J]. 光学 精密工程, 2022, 30(9): 1058-1070. doi: 10.37188/OPE.20223009.1058http://dx.doi.org/10.37188/OPE.20223009.1058
WANG G, WEI W N, DAI J, et al. Linear yaw compound piezoelectric micro-motion platform[J]. Opt. Precision Eng., 2022, 30(9): 1058-1070.(in Chinese). doi: 10.37188/OPE.20223009.1058http://dx.doi.org/10.37188/OPE.20223009.1058
黄涛, 罗治洪, 陶桂宝, 等. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学 精密工程, 2022, 30(14): 1716-1724. doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
HUANG T, LUO Z H, TAO G B, et al. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Opt. Precision Eng., 2022, 30(14): 1716-1724. (in Chinese). doi: 10.37188/OPE.20223014.1716http://dx.doi.org/10.37188/OPE.20223014.1716
马天兵, 陈南南, 吴晓东, 等. Z型压电振动能量收集装置[J]. 光学 精密工程, 2019, 27(9): 1968-1980. doi: 10.3788/ope.20192709.1968http://dx.doi.org/10.3788/ope.20192709.1968
MA T B, CHEN N N, WU X D, et al. Z-type piezoelectric vibration energy harvesting device[J]. Opt. Precision Eng., 2019, 27(9)1968-1980(in Chinese). doi: 10.3788/ope.20192709.1968http://dx.doi.org/10.3788/ope.20192709.1968
王淑云, 严梦加, 阚君武, 等. 间接激励式压电风力俘能器[J]. 光学 精密工程, 2019, 27(5): 1121-1127. doi: 10.3788/ope.20192705.1121http://dx.doi.org/10.3788/ope.20192705.1121
WANG S Y, YAN M J, KAN J W, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Opt. Precision Eng., 2019, 27(5): 1121-1127.(in Chinese). doi: 10.3788/ope.20192705.1121http://dx.doi.org/10.3788/ope.20192705.1121
SUN L F, LI W J, WU Y Z, et al. Active vibration control of a conical shell using piezoelectric ceramics[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36(4): 366-375. doi: 10.1177/1461348417744304http://dx.doi.org/10.1177/1461348417744304
HUANG Z C, MAO Y H, DAI A N, et al. Active vibration control of piezoelectric sandwich plates[J]. Materials, 2022, 15(11): 3907. doi: 10.3390/ma15113907http://dx.doi.org/10.3390/ma15113907
凌明祥, 刘谦, 曹军义, 等. 压电位移放大机构的力学解析模型及有限元分析[J]. 光学 精密工程, 2016, 24(4): 812-818. doi: 10.3788/ope.20162404.0812http://dx.doi.org/10.3788/ope.20162404.0812
LING M X, LIU Q, CAO J Y, et al. Analytical model and finite element analysis of piezoelectric displacement amplification mechanism[J]. Opt. Precision Eng., 2016, 24(4): 812-818.(in Chinese). doi: 10.3788/ope.20162404.0812http://dx.doi.org/10.3788/ope.20162404.0812
LING M. A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers[J]. Mechanical Systems and Signal Processing, 2019, 119: 486-500. doi: 10.1016/j.ymssp.2018.10.007http://dx.doi.org/10.1016/j.ymssp.2018.10.007
LING M, CAO J, PEHRSON N. Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model[J]. Precision Engineering, 2019, 57: 149-161. doi: 10.1016/j.precisioneng.2019.04.004http://dx.doi.org/10.1016/j.precisioneng.2019.04.004
邱勇, 毛勇建, 蒋华兵. 实验室力学与热学环境试验技术[M]. 北京: 科学出版社, 2021.
QIU Y, MAO Y J, JIANG H B. Laboratory Test Techniques for Mechanical and Thermal Environment Simulation[M]. Beijing: Science Press, 2021.(in Chinese)
严侠, 何颖波, 毛勇建, 等. 一种适用于串联型激振系统的分频振动控制方法: CN202211441077.3[P]. 2023-03-14.
YAN X, HE Y B, MAO Y J, et al. A Frequency Dividing Control Method for Hybrid Excitation Systems: CN202211441077.3[P]. 2023-03-14 (in Chinese)
郑敏, 严侠, 邓婷, 等. 一种液压作动器支撑力平衡及工作位定中控制方法: CN202011452313.2[P]. 2022-07-22.
ZHENG M, YAN X, DENG T, et al. Supporting Force Balance and Working Position Centering Control Method for Hydraulic Actuator: CN2020 11452313.2[P]. 2022-07-22.(in Chinese)
邓婷, 严侠, 王宇飞. 一种非平稳随机振动试验控制系统设计[J]. 装备环境工程, 2022, 19(3): 94-100. doi: 10.7643/issn.1672-9242.2022.03.014http://dx.doi.org/10.7643/issn.1672-9242.2022.03.014
DENG T, YAN X, WANG Y F. A control system design of non-stationary random vibration experiment[J]. Equipment Environmental Engineering, 2022, 19(3): 94-100.(in Chinese). doi: 10.7643/issn.1672-9242.2022.03.014http://dx.doi.org/10.7643/issn.1672-9242.2022.03.014
康甜, 欧峰, 严侠, 等. 变均方根随机振动? 变加速度离心复合试验[J]. 航天器环境工程, 2022, 39(4): 395-400.
KANG T, OU F, YAN X, et al. Combined variable RMS random vibration and variable centrifugal acceleration test[J]. Spacecraft Environment Engineering, 2022, 39(4): 395-400.(in Chinese)
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构