1.河南理工大学 测绘与国土信息工程学院,河南 焦作 454000
[ "代 震(2000-),男,河南驻马店人,硕士研究生,2021年于河南理工大学获得学士学位,主要从事摄影测量与遥感方面研究。E-mail: DZ08102000@163.com" ]
[ "何 荣(1975-),男,河南范县人,教授,博士,2014年于河南理工大学获得博士学位,主要从事变形监测及微波遥感方面研究。E-mail: hero@hpu.edu.cn" ]
扫 描 看 全 文
代震,何荣,王宏涛等.融合机载LiDAR和植被指数的自适应单木提取方法[J].光学精密工程,2023,31(22):3331-3344.
DAI Zhen,HE Rong,WANG Hongtao,et al.Adaptive single tree extraction method based on fusion of airborne lidar and vegetation index[J].Optics and Precision Engineering,2023,31(22):3331-3344.
代震,何荣,王宏涛等.融合机载LiDAR和植被指数的自适应单木提取方法[J].光学精密工程,2023,31(22):3331-3344. DOI: 10.37188/OPE.20233122.3331.
DAI Zhen,HE Rong,WANG Hongtao,et al.Adaptive single tree extraction method based on fusion of airborne lidar and vegetation index[J].Optics and Precision Engineering,2023,31(22):3331-3344. DOI: 10.37188/OPE.20233122.3331.
机载激光数据(Light Detection And Ranging,LiDAR)难以区分地面和草地范围,可见光植被指数无法分离灌木和乔木层,针对上述问题,构建一种融合LiDAR点云与RGB植被指数的多波段信息图像。以激光点云生成精细冠层高度模型(Canopy Height Model,CHM),利用无人机影像数据生成高清数字正射影像,在比较不同植被指数精度后选择差异增强植被指数(Differential Enhanced Vegetation Index,DEVI),与CHM进行融合。形态学重建CHM+DEVI融合图像,去除不合理值;构建训练样本,采用分类回归树算法,分割地面范围并自适应提取植被为乔木、灌木和草地,乔木区域采用局部最大值算法探测树顶点,作为前景标记,非乔木区域赋为后景标记,进行分水岭变换得到分割结果。将该方法提取的植被信息与实测数据进行精度分析,结果表明:改进方法在4个样方中,总体查全率提高3.2%,查准率提高3.9%,准确度F1得分提高3.5%,树高精度分别提高1.7%,6.4%,1.8%和0.3%。验证了改进方法的有效性,同时区域内植被混杂程度越高改进算法的提取效果越好。
Airborne laser data (Light Detection and Ranging, LiDAR) presents challenges in distinguishing between ground and grassland, and visible light vegetation indices are inadequate for differentiating between shrub and tree layers. Therefore, this study proposes the construction of a multi-band information image that integrates LiDAR point cloud data and RGB vegetation indices. The approach integrates multi-band information from LiDAR point cloud data and vegetation indices to create an enhanced image. The fine-grained canopy height model (CHM) is generated using laser point cloud data. Simultaneously, a high-resolution digital orthophoto image is created using unmanned aerial vehicle imagery data. Among the evaluated vegetation indices, the Differential Enhanced Vegetation Index (DEVI) was the most suitable and was fused with the CHM. Subsequently, the CHM+DEVI fused images were reconstructed to eliminate erroneous values. Training samples were constructed, and the classification regression tree algorithm was employed to segment the ground range and adaptively extract vegetation, such as trees, shrubs, and grasslands. Within the tree areas, the local maximum algorithm was applied to detect tree vertices, which served as foreground markers; meanwhile, the non-tree regions were assigned as background markers. The segmentation results were obtained using watershed transformation, and the accuracy of the extracted vegetation information was analyzed by comparing it with ground-truth data. The evaluation results demonstrate the superior performance of the proposed improved algorithm, with the overall recall rate, precision rate, and accuracy F1 score increasing by 3.2%, 3.9%, and 3.5%, respectively. Moreover, the accuracy of tree height measurements exhibited improvements of 1.7%, 6.4%, 1.8%, and 0.3% in the four quadrats. The effectiveness of the improved method was verified, and the higher the degree of vegetation mixing in the region, the better the extraction effect of the improved algorithm.
激光雷达无人机影像差异增强植被指数形态学重建标记分水岭算法
light detection and rangingUAV imagerydifferential enhanced vegetation indexmorphological reconstructionmark-controlled watered segmentation
苏迪, 高心丹. 基于无人机航测数据的森林郁闭度和蓄积量估测[J]. 林业工程学报, 2020, 5(1):156-163.
SU D, GAO X D. Estimation of forest canopy density and stock volume based on UAV aerial survey Data[J]. Journal of Forestry Engineering, 2020, 5(1):156-163.(in Chinese)
郭昱杉, 刘庆生, 刘高焕, 等. 基于标记控制分水岭分割方法的高分辨率遥感影像单木树冠提取[J]. 地球信息科学学报, 2016, 18(9): 1259-1266.
GUO Y S, LIU Q S, LIU G H, et al. Individual tree crown extraction of high resolution image based on marker-controlled watershed segmentation method[J]. Journal of Geo-Information Science, 2016, 18(9): 1259-1266.(in Chinese)
JAY S, BARET F, DUTARTRE D, et al. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops[J]. Remote Sensing of Environment, 2019, 231: 110898. doi: 10.1016/j.rse.2018.09.011http://dx.doi.org/10.1016/j.rse.2018.09.011
ERASMI S, KLINGE M, DULAMSUREN C, et al. Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe[J].Environmental Monitoring and Assessment, 2021, 193(4): 1-18. doi: 10.1007/s10661-021-08996-1http://dx.doi.org/10.1007/s10661-021-08996-1
陈日强, 李长春, 杨贵军, 等. 无人机机载激光雷达提取果树单木树冠信息[J]. 农业工程学报, 2020, 36(22): 50-59. doi: 10.11975/j.issn.1002-6819.2020.22.006http://dx.doi.org/10.11975/j.issn.1002-6819.2020.22.006
CHEN R Q, LI C C, YANG G J, et al. Extraction of crown information from individual fruit tree by UAV LiDAR[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 50-59.(in Chinese). doi: 10.11975/j.issn.1002-6819.2020.22.006http://dx.doi.org/10.11975/j.issn.1002-6819.2020.22.006
HALL SA, BURKE IC, BOX DO, et al. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005, 208(1/2/3): 189-209. doi: 10.1016/j.foreco.2004.12.001http://dx.doi.org/10.1016/j.foreco.2004.12.001
庞勇, 赵峰, 李增元, 等. 机载激光雷达平均树高提取研究[J]. 遥感学报, 2008, 12(1): 152-158. doi: 10.11834/jrs.20080120http://dx.doi.org/10.11834/jrs.20080120
PANG Y, ZHAO F, LI Z Y, et al. Forest height inversion using airborne lidar technology[J]. Journal of Remote Sensing, 2008, 12(1): 152-158(in Chinese). doi: 10.11834/jrs.20080120http://dx.doi.org/10.11834/jrs.20080120
魏青, 张宝忠, 魏征. 基于无人机多光谱影像的地物识别[J]. 新疆农业科学, 2020, 57(5)932-939
WEI Q, ZHANG B Z, WEI Z. Research on object recognition based on UAV multispectral image[J]. Xinjiang Agricultural Sciences, 2020, 57(5)932-939(in Chinese)
李鹏飞, 郭小平, 顾清敏, 等. 基于可见光植被指数的乌海市矿山排土场坡面植被覆盖信息提取研究[J]. 北京林业大学学报, 2020, 42(6): 102-112. doi: 10.12171/j.1000-1522.20190252http://dx.doi.org/10.12171/j.1000-1522.20190252
LI P F, GUO X P, GU Q M, et al. Vegetation coverage information extraction of mine dump slope in Wuhai City of Inner Mongolia based on visible vegetation index[J]. Journal of Beijing Forestry University, 2020, 42(6): 102-112.(in Chinese). doi: 10.12171/j.1000-1522.20190252http://dx.doi.org/10.12171/j.1000-1522.20190252
汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-159. doi: 10.3969/j.issn.1002-6819.2015.05.022http://dx.doi.org/10.3969/j.issn.1002-6819.2015.05.022
WANG X Q, WANG M M, WANG S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152-159.(in Chinese). doi: 10.3969/j.issn.1002-6819.2015.05.022http://dx.doi.org/10.3969/j.issn.1002-6819.2015.05.022
周涛, 胡振琪, 韩佳政, 等. 基于无人机可见光影像的绿色植被提取[J]. 中国环境科学, 2021, 41(5): 2380-2390. doi: 10.3969/j.issn.1000-6923.2021.05.046http://dx.doi.org/10.3969/j.issn.1000-6923.2021.05.046
ZHOU T, HU Z Q, HAN J Z, et al. Green vegetation extraction based on visible light image of UAV[J]. China Environmental Science, 2021, 41(5): 2380-2390. (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.05.046http://dx.doi.org/10.3969/j.issn.1000-6923.2021.05.046
SHEN X, CAO L, YANG B S, et al. Estimation of forest structural attributes using spectral indices and point clouds from UAS-based multispectral and RGB imageries[J]. Remote Sensing, 2019, 11(7): 800. doi: 10.3390/rs11070800http://dx.doi.org/10.3390/rs11070800
杨勇强, 王振锡, 师玉霞, 等. 基于无人机影像的天山云杉林单木树冠信息提取[J]. 新疆农业科学, 2020, 57(8): 1484-1492.
YANG Y Q, WANG Z X, SHI Y X, et al. The extraction of single wood canopy of Picea Schrenkiana var Tianshanica forest based on UAV image[J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1484-1492.(in Chinese)
YAN W Q, GUAN H Y, CAO L, et al. A self-adaptive mean shift tree-segmentation method using UAV LiDAR data[J]. Remote Sensing, 2020, 12(3): 515. doi: 10.3390/rs12030515http://dx.doi.org/10.3390/rs12030515
张海清, 李向新, 王成, 等. 结合DSM的机载LiDAR单木树高提取研究[J]. 地球信息科学学报, 2021, 23(10): 1873-1881. doi: 10.12082/dqxxkx.2021.210030http://dx.doi.org/10.12082/dqxxkx.2021.210030
ZHANG H Q, LI X X, WANG C, et al. Individual tree height extraction from airborne LiDAR data by combining with DSM[J]. Journal of Geo-Information Science, 2021, 23(10): 1873-1881.(in Chinese). doi: 10.12082/dqxxkx.2021.210030http://dx.doi.org/10.12082/dqxxkx.2021.210030
FU X, ZHANG Z, CAO L, et al. Assessment of approaches for monitoring forest structure dynamics using bi-temporal digital aerial photogrammetry point clouds[J]. Remote Sensing of Environment, 2021, 255: 112300. doi: 10.1016/j.rse.2021.112300http://dx.doi.org/10.1016/j.rse.2021.112300
李佳, 王明果, 王云川, 等. 顾及无人机影像点云特征的绿地信息分类方法[J]. 生态科学, 2022, 41(5): 11-18.
LI J, WANG M G, WANG Y C, et al. Vegetation information classification method considering UAV image point cloud characteristics[J]. Ecological Science, 2022, 41(5): 11-18.(in Chinese)
肖冬娜, 周忠发, 尹林江, 等. 融合颜色指数与空间结构的喀斯特山地火龙果单株识别[J]. 激光与光电子学进展, 2022, 59(10): 1028010.
XIAO D N, ZHOU Z F, YIN L J, et al. Identification of single plant of Karst Mountain pitaya by fusion of color index and spatial structure[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1028010.(in Chinese)
张睎伟, 王磊, 汪西原. 基于CART决策树的沙地信息提取方法研究[J]. 干旱区地理, 2019, 42(5): 1133-1140. doi: 10.1007/s40333-019-0105-7http://dx.doi.org/10.1007/s40333-019-0105-7
ZHANG X W, WANG L, WANG X Y. Sand information extraction method based on CART decision tree[J]. Arid Land Geography, 2019, 42(5): 1133-1140.(in Chinese). doi: 10.1007/s40333-019-0105-7http://dx.doi.org/10.1007/s40333-019-0105-7
MEYER F, BEUCHER S. Morphological segmentation[J]. Journal of Visual Communication and Image Representation, 1990,1(1):21-46. doi: 10.1016/1047-3203(90)90014-mhttp://dx.doi.org/10.1016/1047-3203(90)90014-m
马学条, 周彦均, 王永慧, 等. 基于形态学重建的分水岭图像分割实验教学研究[J]. 实验技术与管理, 2021, 38(3): 93-97.
MA X T, ZHOU Y J, WANG Y H, et al. Research on experimental teaching of watershed image segmentation based on morphological reconstruction[J]. Experimental Technology and Management, 2021, 38(3): 93-97.(in Chinese)
徐伟萌, 杨浩, 李振洪, 等. 利用无人机数码影像进行密植型果园单木分割[J]. 武汉大学学报(信息科学版), 2022, 47(11): 1906-1916.
XU W M, YANG H, LI Z H, et al. Single tree segmentation in close-planting orchard using UAV digital image[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1906-1916.(in Chinese)
XU X, ZHOU Z, TANG Y, et al. Individual tree crown detection from high spatial resolution imagery using a revised local maximum filtering[J]. Remote Sensing of Environment, 2021, 258: 112397. doi: 10.1016/j.rse.2021.112397http://dx.doi.org/10.1016/j.rse.2021.112397
ZÖRNER J, DYMOND J, SHEPHERD J, et al. LiDAR-based regional inventory of tall trees-Wellington, new zealand[J]. Forests, 2018, 9(11): 702. doi: 10.3390/f9110702http://dx.doi.org/10.3390/f9110702
GAMON J A, SURFUS J S. Assessing leaf pigment content and activity with a reflectometer[J]. New Phytologist, 1999, 143(1): 105-117. doi: 10.1046/j.1469-8137.1999.00424.xhttp://dx.doi.org/10.1046/j.1469-8137.1999.00424.x
JR, CAVIGELLI M, DAUGHTRY C S T, et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture, 2005, 6(4): 359-378. doi: 10.1007/s11119-005-2324-5http://dx.doi.org/10.1007/s11119-005-2324-5
ELAZAB A, BORT J, ZHOU B, et al. The combined use of vegetation indices and stable isotopes to predict durum wheat grain yield under contrasting water conditions[J]. Agricultural Water Management, 2015, 158: 196-208. doi: 10.1016/j.agwat.2015.05.003http://dx.doi.org/10.1016/j.agwat.2015.05.003
BARETH G, BOLTEN A, GNYP M L, et al. Comparison of uncalibrated RGBVI with spectrometer-based NDVI derived from UAV sensing systems on field scale[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8: 837-843. doi: 10.5194/isprsarchives-xli-b8-837-2016http://dx.doi.org/10.5194/isprsarchives-xli-b8-837-2016
王鑫运, 黄杨, 邢艳秋, 等. 基于无人机高密度LiDAR点云的人工针叶林单木分割算法[J]. 中南林业科技大学学报, 2022, 42(8): 66-77.
WANG X Y, HUANG Y, XING Y Q, et al. The single tree segmentation of UAV high-density LiDAR point cloud data based on coniferous plantations[J]. Journal of Central South University of Forestry & Technology, 2022, 42(8): 66-77.(in Chinese)
JING L H, HU B X, LI J L, et al. Automated delineation of individual tree crowns from lidar data by multi-scale analysis and segmentation[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(12): 1275-1284. doi: 10.14358/pers.78.11.1275http://dx.doi.org/10.14358/pers.78.11.1275
OK A O, OZDARICI-OK A. 2-D delineation of individual citrus trees from UAV-based dense photogrammetric surface models[J]. International Journal of Digital Earth, 2018, 11(6): 583-608. doi: 10.1080/17538947.2017.1337820http://dx.doi.org/10.1080/17538947.2017.1337820
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构