1.东南大学 机械工程学院,江苏 南京 211189
2.无锡尚实电子科技有限公司,江苏 无锡 214174
[ "夏 衍(1998-),男,安徽安庆人,硕士,2020年于东北大学获得学士学位,2023年于东南大学获得硕士学位,主要从事图像处理、深度学习的研究。E-mail:xiayan@wxautowell.com" ]
[ "罗 晨(1980-),女,江苏扬州人,博士,副教授,博士生导师,2002年于东南大学获得学士学位,2005年于上海交通大学获得硕士学位,2010年于上海交通大学获得博士学位,主要从事机器视觉、三维测量、机器人等方面的研究。E-mail:chenluo@seu.edu.cn" ]
扫 描 看 全 文
夏衍,罗晨,周怡君等.基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J].光学精密工程,2023,31(22):3357-3370.
XIA Yan,LUO Chen,ZHOU Yijun,et al.A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J].Optics and Precision Engineering,2023,31(22):3357-3370.
夏衍,罗晨,周怡君等.基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J].光学精密工程,2023,31(22):3357-3370. DOI: 10.37188/OPE.20233122.3357.
XIA Yan,LUO Chen,ZHOU Yijun,et al.A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J].Optics and Precision Engineering,2023,31(22):3357-3370. DOI: 10.37188/OPE.20233122.3357.
在TFT-LCD面板缺陷检测中,检测对象背景复杂、缺陷细微且种类繁多,而工业生产实时性要求高,传统的缺陷分类算法往往难以兼顾精度和速度要求,无法适用于实际生产应用。为均衡TFT-LCD面板缺陷分类的准确率和速率,提出一种基于Swin Transformer的轻量化深度学习图像分类模型。首先对模型每层输入的特征图进行Token融合以减少模型计算量,从而提高模型的轻量化水平。其次引入深度可分离卷积模块以帮助模型增加卷积归纳偏置,从而缓解模型对海量数据的依赖问题。最后使用知识蒸馏方法来克服模型轻量化导致的检测精度下降问题。在自制TFT-LCD面板缺陷分类数据集上的实验表明,本文提出的改进模型相比基线模型,FLOPs计算量降低了2.6 G,速度指标提升了17%,而Top-1 Acc精度仅损失1.3%,且与其他图像分类主流模型相比,在自制数据集和公开数据集上都具有更均衡的精度和速度。
Defect detection in thin film transistor-liquid crystal display (TFT-LCD) circuits is a challenging task because of the complex background setting, different types of defects involved, and real-time detection requirements from industry. Traditional methods have difficulties in satisfying the dual requirements of detection speed and accuracy. To address this challenge, in this study, a deep learning method is developed for image classification based on the Swin Transformer technique. First, token merging is used to reduce the computational complexity of each layer of the model, thus improving computation efficiency. Then, a depthwise separable convolution module is introduced to add convolutional bias to reduce the reliance on massive data. Finally, a knowledge distillation method is applied to overcome the problem of reduced detection accuracy caused by the less-intensive computation design. Experimental results on the self-made dataset demonstrate that the proposed method achieves a 2.6 G FLOPs reduction and a 17% speed improvement compared to baseline models, with only a 1.3% Top-1 accuracy precision reduction. More importantly, the proposed model achieves better balance on accuracy and detection speed on both self-made and public datasets than existing mainstream models on image classification in the TFT-LCD manufacturing industry.
TFT-LCDTransformer图像分类计算机视觉
Thin Film Transistor Liquid Crystal Display(TFT-LCD)transformerimage classificationcomputer vision
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621. doi: 10.1109/tsmc.1973.4309314http://dx.doi.org/10.1109/tsmc.1973.4309314
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).20-25, 2005, San Diego, CA, USA. IEEE, 2005: 886-893. doi: 10.1109/cvpr.2005.177http://dx.doi.org/10.1109/cvpr.2005.177
STOCKMAN G, SHAPIRO LG. Computer Vision[M]. New Jersey: Prentice Hall, 2002: 69-73.
PLATT J C. Sequential minimal optimization: a fast algorithm for training support vector machines[S]. Microsoft Research Technical Report, 1998. doi: 10.7551/mitpress/1130.003.0016http://dx.doi.org/10.7551/mitpress/1130.003.0016
KANG S B, LEE J H, SONG K Y, et al. Automatic defect classification of TFT-LCD panels using machine learning[C]. 2009 IEEE International Symposium on Industrial Electronics.5-8, 2009, Seoul, Korea (South). IEEE, 2009: 2175-2177. doi: 10.1109/isie.2009.5213760http://dx.doi.org/10.1109/isie.2009.5213760
HUANG W, LU H T. Defect Classification of TFT-LCD with bag of visual words approach[C]. 2012 IEEE 6th International Conference on Information and Automation for Sustainability.27-29, 2012, Beijing. IEEE, 2013: 167-170. doi: 10.1109/iciafs.2012.6419899http://dx.doi.org/10.1109/iciafs.2012.6419899
KONG L F, SHEN J, HU Z L, et al. Detection of Water-Stains defects in TFT-LCD based on machine vision[C]. 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).13-15, 2018, Beijing, China. IEEE, 2019: 1-5. doi: 10.1109/cisp-bmei.2018.8633154http://dx.doi.org/10.1109/cisp-bmei.2018.8633154
肖术明, 王绍举, 常琳, 等. 面向手写数字图像的压缩感知快速分类[J]. 光学 精密工程, 2021, 29(7): 1709-1719. doi: 10.37188/OPE.20212907.1709http://dx.doi.org/10.37188/OPE.20212907.1709
XIAO S M, WANG S J, CHANG L, et al. Compressive sensing fast classification for handwritten digital images[J]. Opt. Precision Eng., 2021, 29(7): 1709-1719.(in Chinese). doi: 10.37188/OPE.20212907.1709http://dx.doi.org/10.37188/OPE.20212907.1709
苗传开, 娄树理, 李婷, 等. 基于弱监督学习的多标签红外图像分类算法[J]. 光学 精密工程, 2022, 30(20): 2501-2509. doi: 10.37188/ope.20223020.2501http://dx.doi.org/10.37188/ope.20223020.2501
MIAO C K, LOU S L, LI T, et al. Multi-label infrared image classification algorithm based on weakly supervised learning[J]. Opt. Precision Eng., 2022, 30(20): 2501-2509. (in Chinese). doi: 10.37188/ope.20223020.2501http://dx.doi.org/10.37188/ope.20223020.2501
CHIKONTWE P, KIM S, PARK S H. CAD: Co-Adapting discriminative features for improved Few-Shot classification[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 14534-14543. doi: 10.1109/cvpr52688.2022.01415http://dx.doi.org/10.1109/cvpr52688.2022.01415
ZHANG Z, XUE Z, CHEN Y, et al. Boosting Verified Training for Robust Image Classifications via Abstraction[EB/OL]. 2023: arXiv: 2303.11552. https://arxiv.org/abs/2303.11552.pdfhttps://arxiv.org/abs/2303.11552.pdf. doi: 10.1109/cvpr52729.2023.01559http://dx.doi.org/10.1109/cvpr52729.2023.01559
CHEN W, GAO Y, GAO L, et al. A new ensemble approach based on deep convolutional neural networks for steel surface defect classification[J]. Procedia CIRP, 2018, 72: 1069-1072. doi: 10.1016/j.procir.2018.03.264http://dx.doi.org/10.1016/j.procir.2018.03.264
FU G, SUN P, ZHU W, et al. A deep-learning-based approach for fast and robust steel surface defects classification[J]. Optics and Lasers in Engineering, 2019, 121: 397-405. doi: 10.1016/j.optlaseng.2019.05.005http://dx.doi.org/10.1016/j.optlaseng.2019.05.005
KONOVALENKO I, MARUSCHAK P, BREZINOVÁ J, et al. Steel surface defect classification using deep residual neural network[J]. Metals, 2020, 10(6): 846. doi: 10.3390/met10060846http://dx.doi.org/10.3390/met10060846
HE D, XU K, WANG D. Design of multi-scale receptive field convolutional neural network for surface inspection of hot rolled steels[J]. Image and Vision Computing, 2019, 89: 12-20. doi: 10.1016/j.imavis.2019.06.008http://dx.doi.org/10.1016/j.imavis.2019.06.008
HASELMANN M, GRUBER D. Supervised machine learning based surface inspection by synthetizing artificial defects[C]. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA).18-21, 2017, Cancun, Mexico. IEEE, 2018: 390-395. doi: 10.1109/icmla.2017.0-130http://dx.doi.org/10.1109/icmla.2017.0-130
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV).10-17, 2021, Montreal, QC, Canada. IEEE, 2022: 9992-10002. doi: 10.1109/iccv48922.2021.00986http://dx.doi.org/10.1109/iccv48922.2021.00986
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. 2020: arXiv: 2010.11929. https://arxiv.org/abs/2010.11929.pdfhttps://arxiv.org/abs/2010.11929.pdf
BOLYA D, FU C, DAI X, et al. Token Merging: your ViT but Faster[EB/OL]. 2022: arXiv: 2210.09461. https://arxiv.org/abs/2210.09461.pdfhttps://arxiv.org/abs/2210.09461.pdf
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 1800-1807. doi: 10.1109/cvpr.2017.195http://dx.doi.org/10.1109/cvpr.2017.195
HINTON G, VINYALS O, DEAN J. Distilling The Knowledge in a Neural Network[EB/OL]. 2015: arXiv: 1503.02531. https://arxiv.org/abs/1503.02531.pdfhttps://arxiv.org/abs/1503.02531.pdf. doi: 10.5860/choice.189890http://dx.doi.org/10.5860/choice.189890
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. doi: 10.1109/cvpr.2016.90http://dx.doi.org/10.1109/cvpr.2016.90
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2261-2269. doi: 10.1109/cvpr.2017.243http://dx.doi.org/10.1109/cvpr.2017.243
TAN M, LE Q V. EfficientNetV2: Smaller Models and Faster Training[EB/OL]. 2021: arXiv: 2104.00298. https://arxiv.org/abs/2104.00298.pdfhttps://arxiv.org/abs/2104.00298.pdf.
MEHTA S, RASTEGARI M. Separable Self-Attention for Mobile Vision Transformers[EB/OL]. 2022: arXiv: 2206.02680. https://arxiv.org/abs/2206.02680.pdfhttps://arxiv.org/abs/2206.02680.pdf. doi: 10.1145/3503161.3548540http://dx.doi.org/10.1145/3503161.3548540
LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 11966-11976. doi: 10.1109/cvpr52688.2022.01167http://dx.doi.org/10.1109/cvpr52688.2022.01167
WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: Co-Designing and scaling convnets with masked autoencoders[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 16133-16142. doi: 10.1109/cvpr52729.2023.01548http://dx.doi.org/10.1109/cvpr52729.2023.01548
FANG Y X, WANG W, XIE B H, et al. EVA: exploring the limits of masked visual representation learning at scale[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 19358-19369. doi: 10.1109/cvpr52729.2023.01855http://dx.doi.org/10.1109/cvpr52729.2023.01855
FANG Y, SUN Q, WANG X, et al. EVA-02: a Visual Representation for Neon Genesis[EB/OL]. 2023: arXiv: 2303.11331. https://arxiv.org/abs/2303.11331.pdfhttps://arxiv.org/abs/2303.11331.pdf. doi: 10.1109/cvpr52729.2023.01855http://dx.doi.org/10.1109/cvpr52729.2023.01855
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构