1.上海工程技术大学 机械与汽车工程学院 机器人研究所,上海 201620
2.上海市大型构件智能制造机器人技术协同创新中心,上海 201620
[ "王昊祥(1997-),男,硕士研究生,主要研究方向为光纤光栅传感。E-mail:1721363310@qq.com" ]
[ "冯 艳(1976-),女,博士,教授,主要研究方向为光纤光栅传感、智能机器人触觉感知等。E-mail:xmfy0833@sina.com" ]
扫 描 看 全 文
王昊祥,冯艳,潘睿智等.光纤光栅波电转换的人机仿生跟随[J].光学精密工程,2023,31(23):3414-3425.
WANG Haoxiang,FENG Yan,PAN Ruizhi,et al.Bionic tracing of human and robotic arm based on FBG's wavelength-electric conversion[J].Optics and Precision Engineering,2023,31(23):3414-3425.
王昊祥,冯艳,潘睿智等.光纤光栅波电转换的人机仿生跟随[J].光学精密工程,2023,31(23):3414-3425. DOI: 10.37188/OPE.20233123.3414.
WANG Haoxiang,FENG Yan,PAN Ruizhi,et al.Bionic tracing of human and robotic arm based on FBG's wavelength-electric conversion[J].Optics and Precision Engineering,2023,31(23):3414-3425. DOI: 10.37188/OPE.20233123.3414.
为拓展光纤光栅在机器人智能感知领域的应用,设计了光纤光栅感知护具并研发了光纤光栅波电转换系统及其人机仿生跟随的交互操控算法。感知护具中设置有3个光纤布拉格光栅传感单元,主要包括弹性绳的拉力环。通过拉力环对光纤光栅施加预紧力,可有效避免由于衣物或皮肤聚集引起的牵引力方向偏移。光纤光栅波电转换系统对人体手臂的肘关节弯曲角度、腕关节俯仰角度、指关节开合角度进行运动姿态特征提取,分别对应控制机械臂的方向、高度和机械爪开合角度。构建了人体手臂运动角度范围和机械臂运动角度量程的对应关系,获取了检测系数和控制系数,最终通过动态实时波长与PWM控制电信号的转换推导出系统的波电转换系数。实验结果显示,在实验量程内,机械臂的方向、高度、开合控制输出的波电转换系数最大累积误差分别是0.771 11%,1.992 91%,0.341 17%,3个控制角度的输出偏差分别为1.135 60°,1.720 56°,1.826 57°。光纤光栅波电转换的仿生跟随方法具有良好的控制精度,实现了机械臂运动与人体手臂运动的仿生跟随,为智能机器人仿生跟随的深入研究奠定了理论基础。
To expand the application of fiber Bragg grating sensors in the field of robotic intelligent sensing, we have designed a novel FBG forearm sensing sheath. In this workstudy, a wavelength -electric conversion control system and the an algorithm forof human-computer bionic tracing were developed. There were three FBG sensing units including tension rings in the forearm sensing sheath. The tension rings made of spandex polyurethane fibers exerted a pre-tightening force on FBGs, which could effectively avoid the traction direction deviation caused by clothing or skin gathering. The joint movements caused the spandex polyurethane fibers to drive the FBGs stretch or axial contractionng axially and the wavelengths shift of FBGs' wavelengths shift. Thereafter, the wavelength-electric conversion control system transfered the motion posture features of human elbow bending angle ,α,, wrist pitching angle ,β,, and knuckle joint motion angle ,γ, to the robot arm's direction ,θ,, height ,φ,, and mechanical claw opening and closing angle ,ψ,, respectively. By deducing the relationship between the range of the human joint movement's range and the output range of the robot arm, the detection coefficient and the control coefficient were obtained. Then, the wavelength-electric conversion coefficient was deduced by converting the dynamic wavelength to the control electric signal in real-time. The experimental results demonstrate that this wavelength -electric conversion control system can make the robotic arm trace the human elbow bending, wrist pitching, and finger joint motion with good linear responses. Within the experimental range, the maximum cumulative error of wavelength-electric conversion coefficient of direction, height, and open/close control output are 0.771 11%,1.992 91%, and 0.341 17%, and the deviation of three control angle outputs are 1.135 60°, 1.720 56°, and 1.826 57°, respectively. The wavelength -electric conversion control system has good control accuracy and it can make the robotic arm track human forearm movements . The research results can provide a theoretical basis to further develop the FBG sensing system of bionic tracing for the robotic arm.
光纤布拉格光栅仿生跟随波电转换姿态特征
optical fiber Bragg gratingbionic tracingwave-electric conversionposture feature
PALEP J. Robotic assisted minimally invasive surgery[J]. Journal of Minimal Access Surgery, 2009, 5(1): 1. doi: 10.4103/0972-9941.51313http://dx.doi.org/10.4103/0972-9941.51313
胡炼, 王志敏, 汪沛, 等. 基于激光感知的农业机器人定位系统[J]. 农业工程学报, 2023, 39(5):1-7. doi: 10.11975/j.issn.1002-6819.202211144http://dx.doi.org/10.11975/j.issn.1002-6819.202211144
HU L, WANG ZH M, WANG P, et al. Agricultural robot positioning system based on laser sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5):1-7.(in Chinese). doi: 10.11975/j.issn.1002-6819.202211144http://dx.doi.org/10.11975/j.issn.1002-6819.202211144
李振, 赵欢, 王辉, 等. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报, 2022, 58(9): 200-209. doi: 10.3901/jme.2022.09.200http://dx.doi.org/10.3901/jme.2022.09.200
LI ZH, ZHAO H, WANG H, et al. Research on contact steady-state adaptive force tracking of robot grinding and polishing[J]. Journal of Mechanical Engineering, 2022, 58(9): 200-209.(in Chinese). doi: 10.3901/jme.2022.09.200http://dx.doi.org/10.3901/jme.2022.09.200
王仕强, 于佩航, 喻建胜, 等. 放喷管线自动打磨爬行机器人设计与试验[J]. 机械设计与研究, 2023, 39(1): 22-25, 30.
WANG SH Q, YU P H, YU J SH, et al. Design and test of automatic grinding crawling robot for relief pipeline[J]. Machine Design & Research, 2023, 39(1): 22-25, 30.(in Chinese)
张凯,张尚盈,陈皓晖,等.水陆两栖仿生机器人水下步态生成研究[J/OL].机械科学与技术,2023:1-6.
ZHANG K,ZHANG S Y,CHEN H H, et al. Research on underwater gait generation of the amphibious bionic robot[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2023:1-6. (in Chinese)
高勇, 陈伟海, 陆震, 等. 蟑螂机器人仿生机理及运动控制[J]. 机械工程学报, 2010, 46(13):91-99. doi: 10.3901/jme.2010.13.091http://dx.doi.org/10.3901/jme.2010.13.091
GAO Y, CHEN W H, LU ZH, et al. Bionic mechanism and locomotion control for a cockroach robot[J]. Journal of Mechanical Engineering, 2010, 46(13):91-99. (in Chinese). doi: 10.3901/jme.2010.13.091http://dx.doi.org/10.3901/jme.2010.13.091
黄品高,黄剑平,黄博俊, 等.实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法[J].中国科学基金,2021,35(S1):227-235.
HUANG P G, HUANG J P, HUANG B J, et al. The methods of neuromuscular function reinnervation and ambulation-intention recognition of lower-limb amputees to realize the intelligent and bionic control of powered prosthetic legs[J]. Fundamental Research Science Foundation in China,2021,35(S1):227-235. (in Chinese)
晏益朋,余城洋,熊露婧,等.一种基于离散时域模型的单相PWM整流器控制参数多目标优化设计方法[J].电工技术学报,2023(38):1-12.
YAN Y P, YU CH Y, XIONG L J, et al. A multi-objective controller parameter design optimization method of single-phase PWM rectifier with discrete-time domain model [J]. Transactions of China Electrotechnical Society,2023(38):1-12. (in Chinese)
张洁, 何文涛, 冯华星. 基于直流无刷电机的PWM电路设计[J]. 微电子学与计算机, 2021, 38(3): 84-88.
ZHANG J, HE W T, FENG H X. The design of PWM circuit based on DC brushless motor[J]. Microelectronics & Computer, 2021, 38(3): 84-88.(in Chinese)
史晓娟, 姚兵, 王磊, 等. 基于STM32和LabVIEW的嵌入式可编程控制系统[J]. 仪表技术与传感器, 2023(4): 97-101. doi: 10.3969/j.issn.1002-1841.2023.04.020http://dx.doi.org/10.3969/j.issn.1002-1841.2023.04.020
SHI X J, YAO B, WANG L, et al. Embedded programmable control system based on STM32 and LabVIEW[J]. Instrument Technique and Sensor, 2023(4): 97-101.(in Chinese). doi: 10.3969/j.issn.1002-1841.2023.04.020http://dx.doi.org/10.3969/j.issn.1002-1841.2023.04.020
吴凯, 周悦, 郭威, 等. 海岸带履带机器人控制系统的研究与设计[J]. 制造业自动化, 2022, 44(11):24-28. doi: 10.3969/j.issn.1009-0134.2022.11.007http://dx.doi.org/10.3969/j.issn.1009-0134.2022.11.007
WU K, ZHOU Y, GUO W, et al. Research and design of the control system of coastal track robot[J]. Manufacturing Automation, 2022, 44(11):24-28.(in Chinese). doi: 10.3969/j.issn.1009-0134.2022.11.007http://dx.doi.org/10.3969/j.issn.1009-0134.2022.11.007
ZHANG H, ZHANG D Z, WANG Z H, et al. Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5128-5138. doi: 10.1021/acsami.2c17904http://dx.doi.org/10.1021/acsami.2c17904
卢思彤, 李柏晨, 阎吉雅, 等. 柔性仿生手指关节的触觉力/角度感知[J]. 光学 精密工程, 2023, 31(4): 470-478. doi: 10.37188/OPE.20233104.0470http://dx.doi.org/10.37188/OPE.20233104.0470
LU S T, LI B CH, YAN J Y, et al. A tactile force/Angle perception method for flexible humanoid finger joints[J]. Opt. Precision Eng., 2023, 31(4): 470-478.(in Chinese). doi: 10.37188/OPE.20233104.0470http://dx.doi.org/10.37188/OPE.20233104.0470
AI Q S, ZHAO M Y, CHEN K, et al. Flexible coding scheme for robotic arm control driven by motor imagery decoding[J]. Journal of Neural Engineering, 2022, 19(5): 056008. doi: 10.1088/1741-2552/ac84a9http://dx.doi.org/10.1088/1741-2552/ac84a9
赵雪.基于手臂姿态和视觉的遥操作人机协作研究[D].重庆:重庆大学,2021.
ZHAO X. Research on Human-Robot Collaboration of Teleoperation Based on Arm Posture and Vision[D]. Chongqing: Chonqqing University,2021.
刘正雄, 司继康, 陈刚, 等. 面向遥操作手眼协调的虚拟仿真交互控制方法[J]. 系统工程与电子技术, 2020, 42(5):1146-1151. doi: 10.3969/j.issn.1001-506X.2020.05.23http://dx.doi.org/10.3969/j.issn.1001-506X.2020.05.23
LIU Zh X, SI J K, CHEN G, et al. Interaction control method of virtual simulation for hand-eye coordination in teleoperation[J]. Systems Engineering and Electronics, 2020, 42(5):1146-1151. (in Chinese). doi: 10.3969/j.issn.1001-506X.2020.05.23http://dx.doi.org/10.3969/j.issn.1001-506X.2020.05.23
葛俊彦, 史金龙, 周志强, 等. 基于三维检测网络的机器人抓取方法[J]. 仪器仪表学报, 2021, 42(8): 146-153.
GE J Y, SHI J L, ZHOU ZH Q, et al. A robotic grasping method based on three-dimensional detection network[J]. Chinese Journal of Scientific Instrument, 2021, 42(8): 146-153.(in Chinese)
SANDRA D, JOÃO S, JAIME C. Optimized in-vehicle multi person human body pose detection[J]. Procedia Computer Science, 2022, 204: 479-487. doi: 10.1016/j.procs.2022.08.059http://dx.doi.org/10.1016/j.procs.2022.08.059
KHAN T. An intelligent baby monitor with automatic sleeping posture detection and notification[J]. AI, 2021, 2(2): 290-306. doi: 10.3390/ai2020018http://dx.doi.org/10.3390/ai2020018
郭永兴, 张航, 熊丽, 等. 基于光纤布拉格光栅的扑翼机器人三维扑动变形测量[J]. 光学 精密工程, 2023, 31(9): 1304-1313. doi: 10.37188/OPE.20233109.1304http://dx.doi.org/10.37188/OPE.20233109.1304
GUO Y X, ZHANG H, XIONG L, et al. Fiber Bragg grating based 3D flutter deformation measurement of flapping wing robot[J]. Opt. Precision Eng., 2023, 31(9): 1304-1313.(in Chinese). doi: 10.37188/OPE.20233109.1304http://dx.doi.org/10.37188/OPE.20233109.1304
FENG Y, LIU H, LIU P. Assessment for two-dimensional sliding based on cantilever beams with optical fiber Bragg gratings[J]. Optical Fiber Technology, 2021, 67: 102729. doi: 10.1016/j.yofte.2021.102729http://dx.doi.org/10.1016/j.yofte.2021.102729
GUO Y, ZHU J, XIONG L, et al. Finger motion detection based on optical fiber Bragg grating with polyimide substrate[J]. Sensors and Actuators A: Physical, 2022, 338: 113482. doi: 10.1016/j.sna.2022.113482http://dx.doi.org/10.1016/j.sna.2022.113482
徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学, 2013, 6(3): 306-317. doi: 10.3788/co.20130603.0306http://dx.doi.org/10.3788/co.20130603.0306
XU G Q, XIONG D Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Journal of Optics, 2013, 6(3): 306-317.(in Chinese). doi: 10.3788/co.20130603.0306http://dx.doi.org/10.3788/co.20130603.0306
LI L Q, HE R J, SOARES M S, et al. Embedded FBG-based sensor for joint movement monitoring[J]. IEEE Sensors Journal, 2021, 21(23): 26793-26798. doi: 10.1109/jsen.2021.3120995http://dx.doi.org/10.1109/jsen.2021.3120995
APIWATTANADEJ T, CHUN B J, LEE H, et al. Stability test of the silicon Fiber Bragg Grating embroidered on textile for joint angle measurement[C].Proc SPIE 10449, Fifth International Conference on Optical and Photonics Engineering, 2017, 10449: 47-52. doi: 10.1117/12.2269096http://dx.doi.org/10.1117/12.2269096
SILVA A FDA, GONCALVES A F, MENDES P M, et al. FBG sensing glove for monitoring hand posture[J]. IEEE Sensors Journal, 2011, 11(10): 2442-2448. doi: 10.1109/jsen.2011.2138132http://dx.doi.org/10.1109/jsen.2011.2138132
ZALTIERI M, MASSARONI C, PRESTI DLO, et al. A wearable device based on a fiber Bragg grating sensor for low back movements monitoring[J]. Sensors (Basel, Switzerland), 2020, 20(14): 3825. doi: 10.3390/s20143825http://dx.doi.org/10.3390/s20143825
KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors [J]. Journal of Lightwave Technology, 1997,15 (8):1442-1463. doi: 10.1109/50.618377http://dx.doi.org/10.1109/50.618377
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构