1.汕头大学 智能制造技术教育部重点实验室,广东 汕头 515063
2.大连理工大学 微纳米技术及系统辽宁省重点实验室,辽宁 大连 116023
3.中国计量科学研究院, 北京 100029
[ "凌四营(1978-),男,山东日照人,博士,教授,2004年于山东交通学院获得学士学位,2007年于山东理工大学获得硕士学位,2011年于大连理工大学获得博士学位,主要研究方向为精密机械设计、精密磨齿工艺与测试技术。E-mail:luckling168@163.com" ]
[ "凌 明(1996-),男,山东日照人,博士研究生,2018年于西安建筑科技大学获得学士学位,主要研究方向为齿轮精密加工与测试技术。E-mail:lingming@mail.dlut.edu.cn" ]
扫 描 看 全 文
凌四营,凌明,林虎等.高精度齿轮渐开线样板与测量仪器研究进展[J].光学精密工程,2023,31(23):3457-3473.
LING Siying,LING Ming,LIN Hu,et al.Research progress in high-precision gear involute artifacts and measuring instruments[J].Optics and Precision Engineering,2023,31(23):3457-3473.
凌四营,凌明,林虎等.高精度齿轮渐开线样板与测量仪器研究进展[J].光学精密工程,2023,31(23):3457-3473. DOI: 10.37188/OPE.20233123.3457.
LING Siying,LING Ming,LIN Hu,et al.Research progress in high-precision gear involute artifacts and measuring instruments[J].Optics and Precision Engineering,2023,31(23):3457-3473. DOI: 10.37188/OPE.20233123.3457.
渐开线圆柱齿轮是量大面广的关键机械基础件,为了实现渐开线量值的统一,通常需要将渐开线样板作为渐开线的实体标准器进行渐开线齿廓偏差的量值溯源、量值传递与量值比对。本文回顾了各国高精度单基圆参数、多基圆参数渐开线样板、集成其他几何参数的齿轮样板、非渐开线式样板及高精度渐开线测量仪器的研究进展,并对渐开线样板的使用展开长度提出了建议,对高精度渐开线样板的发展做出了展望。
Involute cylindrical gears are a key component of various machines and are widely used in all areas of the national economy. To achieve uniformity in involute measurements, gear involute artifacts are often used as entity standards for the traceability, transfer, and comparison of involute profile deviations. This paper reviews the progress in research on high-precision gear involute artifacts with single and multi-base circular parameters, gear artifacts integrating other geometrical parameters, non-involute artifacts, and high-precision involute measuring instruments in various countries. It also suggests uses of roll path length of gear involute artifacts and provides an outlook on the development of high-precision gear involute artifacts.
渐开线样板渐开线齿廓偏差渐开线测量仪标准器
involute artifactinvolute profile deviationsinvolute measuring instrumentmeasurement standard
科技部. “十三五”先进制造技术领域科技创新专项规划[EB/OL]. (2017-05-02)[2021-09-29]. http://www.gov.cn/xinwen/2017-05/02/content_5190479.htmhttp://www.gov.cn/xinwen/2017-05/02/content_5190479.htm. doi: 10.3969/j.issn.1672-3732.2016.03.008http://dx.doi.org/10.3969/j.issn.1672-3732.2016.03.008
Ministry of Science and Technology. The 13th Five-Year Plan for Scientific and Technological Innovation Advanced Manufacturing Technology [EB/OL]. http://www.gov.cn/xinwen/2017-05/02/content_5190479.htm.http://www.gov.cn/xinwen/2017-05/02/content_5190479.htm.(in Chinese). doi: 10.3969/j.issn.1672-3732.2016.03.008http://dx.doi.org/10.3969/j.issn.1672-3732.2016.03.008
国务院. 计量发展规划(2021-2035年)[EB/OL]. (2021-12-31)[2022-06-10]. http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.htmlhttp://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.
CouncilState. Quantitative Development Planning (2021-2035)[EB/OL]. (2021-12-31)[2022-06-10]. http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.(in Chinese)
全国齿轮标准化技术委员会. 圆柱齿轮 ISO齿面公差分级制 第1部分:齿面偏差的定义和允许值 GB/T 10095.1-2022[S]. 北京: 中国标准出版社, 2022.
National Gear Standardization Technical Committee. Cylindrical gears-ISO system of flank tolerance classification-Part1:Definitions and allowable values of deviations relevant to flanks of gear teeth-2022 GB/T 10095.1[S]. Beijing: Standards Press of China, 2022. (in Chinese)
ISO. Cylindrical gears-ISO system of flank tolerance classification-Part1:Definitions and allowable values of deviations relevant to flanks of gear teeth1328-1: 2013 ISO [S]. Geneval: International Standards Organization, 2013.
ISO. Gears-Evaluation of instruments for the measurement of individual gears18653: 2003 ISO [S]. Geneval: International Standards Organization, 2003.
Cylindrical gears-Code of inspection practice-Part5:Recommendations relative to evaluation of gear measuring instruments: 10064-5: 2005ISO/TR [S]. International Organization for Standardization (iso), 2005.
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 齿轮渐开线样板: GB/T 6467—2010[S]. 北京: 中国标准出版社, 2011. doi: 10.3969/j.issn.1002-7203.2014.04.003http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The involute artifact of gear: 6467-2010GB/T [S]. Beijing: Standards Press of China, 2011. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
中华人民共和国国家市场监督管理总局,中国计量科学研究院,德国联邦物理技术研究院. 中德计量合作40年纪念文集[M]. 北京: 中国标准出版社, 2019: 87.
State Administration of Market Supervision and Administration of the People's Republic of China, National Institute of Metrology, China, BundesanstaltPhysikalisch-Technische. Collection of Commemorative Papers on the 40th Anniversary of Sino German Metrology Cooperation[M]. Beijing: Standards Press of China, 2019: 87. (in Chinese)
唐启昌. 自力更生建立渐开线国家标准[J]. 中国计量, 2008(9): 51-52. doi: 10.3969/j.issn.1006-9364.2008.09.029http://dx.doi.org/10.3969/j.issn.1006-9364.2008.09.029
TANG Q CH. Self-reliant establishment of national standards for involute [J]. China Metrology, 2008(9): 51-52.(in Chinese). doi: 10.3969/j.issn.1006-9364.2008.09.029http://dx.doi.org/10.3969/j.issn.1006-9364.2008.09.029
唐启昌. 用渐开线样板作为渐开线仪器的标准[J]. 计量工作, 1977(1): 5-8.
TANG Q CH. The involute artifact is used as the standard for involute instruments[J]. Metrology Science and Technology, 1977(1): 5-8. (in Chinese)
张泰昌. 渐开线样板的检定和使用[J]. 计量技术. 1986(12): 27-29.
ZHANG T CH. Verification and use of involute artifact[J]. Metrology Science and Technology. 1986(12): 27-29. (in Chinese)
唐启昌. 长度计量检定测试技术讲座(五): 关于齿轮渐开线仪器的正确使用和量值统一(上)[J]. 中国计量, 1997(5):57-59. doi: 10.3901/jme.2012.05.124http://dx.doi.org/10.3901/jme.2012.05.124
TANG Q CH. Technical lecture on length measurement verification test (V)-on the correct use of gear involute instrument and the unification of quantity value (I)[J]. China Metrology, 1997(5): 57-59. (in Chinese). doi: 10.3901/jme.2012.05.124http://dx.doi.org/10.3901/jme.2012.05.124
佟晓冬, 王立鼎, 王岩, 等. 渐开线实体基准的研制[J]. 计量技术, 1998(5): 33-36.
TONG X D, WANG L D, WANG Y, et al. Development of solid reference for involute [J]. Measurement Technique, 1998(5): 33-36.(in Chinese)
王立鼎,卢占山. 模数2基准标准齿轮的研制[J]. 光学机械, 1982(4): 28-34.
WANG L D, LU ZH SH. Development of modular 2 reference standard gear[J]. Optics and Precision Engineering,1982(4): 28-34. (in Chinese)
华恒. 机械工程专家学术成就介绍(46) 精密机械专家王立鼎[J]. 中国机械工程, 1998(6): 82.
HUA H. Introduction to academic achievements of mechanical engineering experts (46) Wang Liding, an expert in precision machinery[J]. China Mechanical Engineering, 1998(6): 82. (in Chinese)
国家计量科学数据中心. 全国社会公用计量标准[EB/OL]. (2021-09-30)[2021-09-30]. https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BFhttps://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.
National Metrological Science Data Center. National Social Public Measurement Standards [EB/OL]. (2021-09-30)[2021-09-30]. https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.(in Chinese)
国家质量监督检验检疫总局. 齿轮测量中心校准规范: JJF 1561—2016[S]. 北京: 中国质检出版社, 2016. doi: 10.3969/j.issn.1002-7203.2014.04.003http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calibration specification for gear measuring centers: 1561—2016JJF [S]. Beijing: Standards Pross of China, 2016. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
FRAZER R C, BICKER R, COX B, et al. An international comparison of involute gear profile and helix measurement[J]. Metrologia, 2004, 41(1): 12-16. doi: 10.1088/0026-1394/41/1/003http://dx.doi.org/10.1088/0026-1394/41/1/003
KNIEL K, CHANTHAWONG N, EASTMAN N, et al. Supplementary comparison EURAMET.L-S24 on involute gear standards[J]. Metrologia, 2014, 51(1A): 04001. doi: 10.1088/0026-1394/51/1a/04001http://dx.doi.org/10.1088/0026-1394/51/1a/04001
METZ D, FERREIRA N, CHAILLOT J, et al. Integration of a piezoresistive microprobe into a commercial gear measuring instrument[J]. Precision Engineering, 2019, 55: 349-360. doi: 10.1016/j.precisioneng.2018.10.003http://dx.doi.org/10.1016/j.precisioneng.2018.10.003
TAKEOKA F, KOMORI M, KUBO A, et al. Design of laser interferometric measuring device of involute profile[J]. Journal of Mechanical Design, 2008, 130(5): 1. doi: 10.1115/1.2890114http://dx.doi.org/10.1115/1.2890114
TAKEOKA F, KOMORI M, KUBO A, et al. High-precision measurement of an involute artefact by a rolling method and comparison between measuring instruments[J]. Measurement Science and Technology, 2009, 20(4): 045105. doi: 10.1088/0957-0233/20/4/045105http://dx.doi.org/10.1088/0957-0233/20/4/045105
TAGUCHI T, MING A G, SHIMOJO M. Development of high precision gear measuring machine[J]. International Journal of Mechatronics and Automation, 2011, 1(3/4): 181. doi: 10.1504/ijma.2011.045250http://dx.doi.org/10.1504/ijma.2011.045250
国家质量监督检验检疫总局. 齿轮渐开线样板检定规程: JJG 332—2003[S]. 北京: 中国计量出版社, 2004. doi: 10.3969/j.issn.1002-7203.2014.04.003http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Verification regulation of gear involute Masters: 332—2003JJG [S]. Beijing: China Metrology Publishing House, 2004. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
MAKAREVICH V. Final report on supplementary comparison COOMET.L-S10: Comparison of length standards for measuring gear parameters[J]. Metrologia, 2012, 49(1A): 04004. doi: 10.1088/0026-1394/49/1a/04004http://dx.doi.org/10.1088/0026-1394/49/1a/04004
KNIEL K, WEDMANN A, STEIN M, et al. COOMET supplementary comparison L-S18 (project: 673/UA-a/15)[J]. Metrologia, 2018, 55(1A): 04008. doi: 10.1088/0026-1394/55/1a/04008http://dx.doi.org/10.1088/0026-1394/55/1a/04008
JANTZEN S, NEUGEBAUER M, MEEß R, et al. Novel measurement standard for internal involute microgears with modules down to 0.1 mm[J]. Measurement Science and Technology, 2018, 29(12): 125012. doi: 10.1088/1361-6501/aae6f4http://dx.doi.org/10.1088/1361-6501/aae6f4
国家质量监督检验检疫总局. 齿轮渐开线测量仪器校准规范: JJF 1124—2004[S]. 北京: 中国计量出版社, 2004.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calibration specification for Gear involute Measuring instruments: 1124—2004JJF [S]. Beijing: China Metrology Publishing House, 2004. (in Chinese)
凌明, 凌四营, 刘祥生, 等. 虑及计值范围的1级齿轮渐开线样板精密成型[J]. 仪器仪表学报, 2021, 42(11): 35-44.
LING M, LING S Y, LIU X SH, et al. Precision forming for class-1 gear involute artefact considering the evaluation range[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 35-44.(in Chinese)
凌四营, 凌明, 石照耀, 等. 1级齿轮渐开线样板的国内量值比对[J]. 光学 精密工程, 2022, 30(22): 2869-2875. doi: 10.37188/ope.20223000.0392http://dx.doi.org/10.37188/ope.20223000.0392
LING S Y, LING M, SHI ZH Y, et al. Measurement comparison for class-1 gear involute artifact in China[J]. Opt. Precision Eng., 2022, 30(22): 2869-2875.(in Chinese). doi: 10.37188/ope.20223000.0392http://dx.doi.org/10.37188/ope.20223000.0392
ZELENÝ V, LINKEOVÁ I, SÝKORA J, et al. Mathematical approach to evaluate involute gear profile and helix deviations without using special gear software[J]. Mechanism and Machine Theory, 2019, 135: 150-164. doi: 10.1016/j.mechmachtheory.2019.01.030http://dx.doi.org/10.1016/j.mechmachtheory.2019.01.030
凌四营. 超精密磨齿中的机床精化及磨齿工艺研究[D]. 大连: 大连理工大学, 2011.
LING S Y. Research on Machine Refinement and Processing for Ultra-precision Gear-grinding[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)
凌四营, 王立鼎, 李克洪, 等. 基于1级精度基准标准齿轮的超精密磨齿工艺[J]. 光学 精密工程, 2011, 19(7):1596-1604. doi: 10.3788/OPE.20111907.1596http://dx.doi.org/10.3788/OPE.20111907.1596
LING S Y, WANG L D, LI K H, et al. Ultra-precision gear-grinding processing based on class 1 master gear[J]. Opt. Precision Eng., 2011, 19(7):1596-1604.(in Chinese). doi: 10.3788/OPE.20111907.1596http://dx.doi.org/10.3788/OPE.20111907.1596
WANG Q, PENG Y, WIEMANN A, et al. Improved gear metrology based on the calibration and compensation of rotary table error motions[J]. CIRP Annals, 2019, 68(1): 511-514. doi: 10.1016/j.cirp.2019.04.078http://dx.doi.org/10.1016/j.cirp.2019.04.078
WIEMANN A K, STEIN M, KNIEL K. Traceable metrology for large involute gears[J]. Precision Engineering, 2019, 55: 330-338. doi: 10.1016/j.precisioneng.2018.10.001http://dx.doi.org/10.1016/j.precisioneng.2018.10.001
NI K, PENG Y, STÖBENER D, et al. Cylindrical Gear Metrology[M]. Precision Manufacturing. Singapore: Springer Singapore, 2019: 1-29. doi: 10.1007/978-981-10-4912-5_9-1http://dx.doi.org/10.1007/978-981-10-4912-5_9-1
TAGUCHI T, KONDO Y. Evaluation of a high-precision gear measuring machine for helix measurement using helix and wedge artifacts[J]. Measurement Science and Technology, 2016, 27(8): 084008. doi: 10.1088/0957-0233/27/8/084008http://dx.doi.org/10.1088/0957-0233/27/8/084008
KONDO Y, KONDO K, OSAWA S, et al. Evaluation of instruments for helix measurement using wedge artifact[J]. Precision Engineering, 2010, 34(4): 667-674. doi: 10.1016/j.precisioneng.2010.01.008http://dx.doi.org/10.1016/j.precisioneng.2010.01.008
KOMORI M, TAKEOKA F, KONDO K, et al. Design method of double ball artifact for use in evaluating the accuracy of a gear-measuring instrument[J]. Journal of Mechanical Design, 2010, 132(7): 1. doi: 10.1115/1.4001875http://dx.doi.org/10.1115/1.4001875
KOMORI M, TAKEOKA F, KONDO Y, et al. High-precision concave spherical artifact for accuracy evaluation of a measuring instrument for an internal gear[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2016, 10(4): JAMDSM0063. doi: 10.1299/jamdsm.2016jamdsm0063http://dx.doi.org/10.1299/jamdsm.2016jamdsm0063
KONDO Y, SASAJIMA K, NOGUCHI S, et al. Tooth form evaluation using ball artifact development of a measuring instrument of a ball center distance traceable to national standard of length[J]. Key Engineering Materials, 2008, 381/382: 595-598. doi: 10.4028/www.scientific.net/kem.381-382.595http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.595
石照耀, 张健, 陈洪芳. 双球渐开线样板的理论分析和应用[J]. 光学 精密工程, 2011, 19(12): 2963-2969. doi: 10.3788/ope.20111912.2963http://dx.doi.org/10.3788/ope.20111912.2963
SHI ZH Y, ZHANG J, CHEN H F. Theoretical analysis of double-ball artifact and its applications[J]. Opt. Precision Eng., 2011, 19(12): 2963-2969.(in Chinese). doi: 10.3788/ope.20111912.2963http://dx.doi.org/10.3788/ope.20111912.2963
陈洪芳, 张健. 齿轮双球样板的设计方法[J]. 哈尔滨工程大学学报, 2012, 33(3): 361-365. doi: 10.3969/j.issn.1006-7043.201101056http://dx.doi.org/10.3969/j.issn.1006-7043.201101056
CHEN H F, ZHANG J. Design method of a double-ball artifact of gears[J]. Journal of Harbin Engineering University, 2012, 33(3): 361-365.(in Chinese). doi: 10.3969/j.issn.1006-7043.201101056http://dx.doi.org/10.3969/j.issn.1006-7043.201101056
陈洪芳, 梁超伟, 李宝山, 等. 新型双轴式圆弧型大尺寸渐开线样板的工作原理[J]. 北京航空航天大学学报, 2022, 48(1): 1-7.
CHEN H F, LIANG CH W, LI B SH, et al. Working principle of novel double-axis arc-shaped large-size involute artifact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 1-7.(in Chinese)
CHEN H, LIANG C, SHI Z, et al. New design method for large involute artifacts[J]. Precision Engineering, 2022, 76: 190-198. doi: 10.1016/j.precisioneng.2022.03.007http://dx.doi.org/10.1016/j.precisioneng.2022.03.007
LANZA G, VIERING B. A novel standard for the experimental estimation of the uncertainty of measurement for micro gear measurements[J]. CIRP Annals, 2011, 60(1): 543-546. doi: 10.1016/j.cirp.2011.03.062http://dx.doi.org/10.1016/j.cirp.2011.03.062
WESS D B. Development of a novel lead master consisting of an offset sphere[J]. Precision Engineering, 1998, 22(4): 206-219. doi: 10.1016/s0141-6359(98)00015-4http://dx.doi.org/10.1016/s0141-6359(98)00015-4
KNIEL K, FRANKE M, HÄRTIG F, et al. Detecting 6 DoF geometrical errors of rotary tables[J]. Measurement, 2020, 153: 107366. doi: 10.1016/j.measurement.2019.107366http://dx.doi.org/10.1016/j.measurement.2019.107366
GUENTHER A, STÖBENER D, GOCH G. Self-calibration method for a ball plate artefact on a CMM[J]. CIRP Annals, 2016, 65(1): 503-506. doi: 10.1016/j.cirp.2016.04.080http://dx.doi.org/10.1016/j.cirp.2016.04.080
KOMORI M, TAKEOKA F, KITEN T, et al. Calibration method for magnetically self-aligned multiball pitch artifact and accuracy upon reassembly[J]. Precision Engineering, 2016, 43: 187-199. doi: 10.1016/j.precisioneng.2015.07.008http://dx.doi.org/10.1016/j.precisioneng.2015.07.008
KOMORI M, TAKEOKA F, KITEN T, et al. Magnetically self-aligned multiball pitch artifact using geometrically simple features[J]. Precision Engineering, 2015, 40: 160-171. doi: 10.1016/j.precisioneng.2014.11.006http://dx.doi.org/10.1016/j.precisioneng.2014.11.006
KONDO Y, OSAWA S, SATO O, et al. Evaluation of instruments for pitch measurement using a sphere artifact[J]. Precision Engineering, 2012, 36(4): 604-611. doi: 10.1016/j.precisioneng.2012.05.002http://dx.doi.org/10.1016/j.precisioneng.2012.05.002
WANG Q C, MILLER J, VON FREYBERG A, et al. Error mapping of rotary tables in 4-axis measuring devices using a ball plate artifact[J]. CIRP Annals, 2018, 67(1): 559-562. doi: 10.1016/j.cirp.2018.04.005http://dx.doi.org/10.1016/j.cirp.2018.04.005
GUENTHER A, KNIEL K, HÄRTIG F, et al. Introduction of a new bevel gear measurement standard[J]. CIRP Annals, 2013, 62(1): 515-518. doi: 10.1016/j.cirp.2013.03.083http://dx.doi.org/10.1016/j.cirp.2013.03.083
孔玉梅. 基准级渐开线激光测量仪的精度提升方法研究[D]. 大连: 大连理工大学, 2022.
KONG Y M. Research on Precision Improvement Method of Reference Involute Laser Measuring Instrument[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
娄志峰. 基准级渐开线测试理论与技术研究[D]. 大连: 大连理工大学, 2008.
LOU ZH F. Research on Theory and Technology of Benchmark Involute Test[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
RUDOLF O. History of gear measuring machines and traceability 1900-2006[J]. Gear Product News. 2006, 10: 20-25.
LING S Y, LOU Z F, WANG L D, et al. Optimal forming principle and grinding experiment of the ultra-precision involute profile[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227(3): 375-382. doi: 10.1177/0954405412469554http://dx.doi.org/10.1177/0954405412469554
高延新,张晓琳,李慧鹏. 齿轮精度与检测技术手册[M]. 北京: 机械工业出版社, 2014.
GAO Y X, ZHANG X L, LI H P. Technical Manual for Gear Accuracy and Inspection[M]. Beijing: China Machine Press, 2014. (in Chinese)
李小燕, 凌四营, 凌明, 等. 高精度齿轮螺旋线样板的测量方法与仪器[J]. 光学 精密工程, 2022, 30(17): 2100-2118. doi: 10.37188/ope.20223000.0051http://dx.doi.org/10.37188/ope.20223000.0051
LI X Y, LING S Y, LING M, et al. Measuring methods and instruments of high precision gear helix artifact[J]. Optics and Precision Engineering, 2022, 30(17): 2100-2118.(in Chinese). doi: 10.37188/ope.20223000.0051http://dx.doi.org/10.37188/ope.20223000.0051
彭东林, 付敏, 陈锡侯, 等. 典型位移传感器分类研究与时栅传感器特点分析[J]. 机械工程学报, 2018, 54(10): 36-42. doi: 10.3901/jme.2018.10.036http://dx.doi.org/10.3901/jme.2018.10.036
PENG D L, FU M, CHEN X H, et al. Classification study on typical displacement sensors and analysis on the characteristics of time grating sensors[J]. Journal of Mechanical Engineering, 2018, 54(10): 36-42.(in Chinese). doi: 10.3901/jme.2018.10.036http://dx.doi.org/10.3901/jme.2018.10.036
李尕丽, 薛梓, 黄垚, 等. 全圆连续角度标准装置的系统误差分离与补偿[J]. 仪器仪表学报, 2021, 42(3): 1-9.
LI G L, XUE Z, HUANG Y, et al. System error separation and compensation of the continuous full circle angle standard device[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 1-9.(in Chinese)
HUANG Y, XUE Z, HUANG M, et al. The NIM continuous full circle angle standard[J]. Measurement Science and Technology, 2018, 29(7): 074013. doi: 10.1088/1361-6501/aac6a6http://dx.doi.org/10.1088/1361-6501/aac6a6
LIN H, XUE Z, YANG G L, et al. Development of a high accurate gear measuring machine based on laser interferometry[C]. Ninth International Symposium on Precision Engineering Measurement and Instrumentation, SPIE Proceedings. Changsha/Zhangjiajie, China. SPIE, 2015. doi: 10.1117/12.2181275http://dx.doi.org/10.1117/12.2181275
林虎, 黄垚, 杨国梁, 等. 新一代齿轮螺旋线基准装置的研制[J]. 计量科学与技术, 2022(4): 67-73.
LIN H, HUANG Y, YANG G L, et al. Development of the new generation national primary standard for gear helix calibration[J]. Metrology Science and Technology, 2022(4): 67-73.(in Chinese)
KCDB. CMCs Uncertainty Statements[EB/OL]. (2022-03-06)[2022-03-06]. https://www.bipm.org/kcdb/cmc/quick-search?includedFilters=& excludedFilters=&page=0&keywords=gearhttps://www.bipm.org/kcdb/cmc/quick-search?includedFilters=&excludedFilters=&page=0&keywords=gear.
OSAKA SEIMITSU KIKAI COTPR. L. OSK Calibration and Measurement Capability[EB/OL]. (2022-07-26)[2022-07-26]. http://www.osk-corp.co.jp/en/pages/center5_2.htmlhttp://www.osk-corp.co.jp/en/pages/center5_2.html.
HÄRTIG F, STEIN M. 3D involute gear evaluation - Part I: Workpiece coordinates[J]. Measurement, 2019, 134: 569-573. doi: 10.1016/j.measurement.2018.10.088http://dx.doi.org/10.1016/j.measurement.2018.10.088
STEIN M, HÄRTIG F. 3D involute gear evaluation - part II: deviations - basic algorithms for modern software validation[J]. Measurement Science and Technology, 2022, 33(12): 125003. doi: 10.1088/1361-6501/ac8c60http://dx.doi.org/10.1088/1361-6501/ac8c60
WENDT K, FRANKE M, HÄRTIG F. Measuring large 3D structures using four portable tracking laser interferometers[J]. Measurement, 2012, 45(10): 2339-2345. doi: 10.1016/j.measurement.2011.09.020http://dx.doi.org/10.1016/j.measurement.2011.09.020
HÄRTIG F, CHRISTIAN K, KARIN K, et al. Improvement of measurement accuracy by combined evaluation of CMM and tracking interferometer measurements[C]. XVII IMEKO World Congress Metrology in the 3rd Millennium, IMEKO: Dubrovnik, 2003: 1172-1175.
陈洪芳, 郑博文, 石照耀, 等. 基于激光追踪仪多站位测量的CMM空域坐标修正方法[J]. 中国激光, 2017, 44(3): 0304003. doi: 10.3788/cjl201744.0304003http://dx.doi.org/10.3788/cjl201744.0304003
CHEN H F, ZHENG B W, SHI ZH Y, et al. CMM spatial coordinate correction method based on laser tracer multistation measurement[J]. Chinese Journal of Lasers, 2017, 44(3): 0304003.(in Chinese). doi: 10.3788/cjl201744.0304003http://dx.doi.org/10.3788/cjl201744.0304003
陈洪芳, 孙衍强, 王亚韦, 等. 高精度激光追踪测量方法及实验研究[J]. 中国激光, 2018, 45(1): 0104003. doi: 10.3788/cjl201845.0104003http://dx.doi.org/10.3788/cjl201845.0104003
CHEN H F, SUN Y Q, WANG Y W, et al. High-precision laser tracking measurement method and experimental study[J]. Chinese Journal of Lasers, 2018, 45(1): 0104003.(in Chinese). doi: 10.3788/cjl201845.0104003http://dx.doi.org/10.3788/cjl201845.0104003
LIN H, KELLER F, STEIN M. Influence and compensation of CMM geometric errors on 3D gear measurements[J]. Measurement, 2020, 151: 107110. doi: 10.1016/j.measurement.2019.107110http://dx.doi.org/10.1016/j.measurement.2019.107110
李笑宇, 林虎, 薛梓, 等. 激光跟踪多边测量自标定优化方法[J]. 仪器仪表学报, 2021, 42(2): 10-17.
LI X Y, LIN H, XUE ZH, et al. Self-calibration optimization method for laser tracking multilateral measurement[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 10-17.(in Chinese)
RAFELD E K, KOPPERT N, FRANKE M, et al. Recent developments on an interferometric multilateration measurement system for large volume coordinate metrology[J]. Measurement Science and Technology, 2022, 33(3): 035004. doi: 10.1088/1361-6501/ac407chttp://dx.doi.org/10.1088/1361-6501/ac407c
Y-12 National Security Complex Capabilities[EB/OL]. (2022-07-28)[2022-07-28]. https://www.y12.doe.gov/mission/global-security/manufacturing-and-technical-services/oak-ridge-metrology-center/capabilitieshttps://www.y12.doe.gov/mission/global-security/manufacturing-and-technical-services/oak-ridge-metrology-center/capabilities. doi: 10.2172/1845834http://dx.doi.org/10.2172/1845834
National Institute of Standards and Technology. Back to the Future: Gear Edition[EB/OL]. (2022-09-12)[2022-12-13]. https://www.nist.gov/news-events/news/2022/09/back-future-gear-editionhttps://www.nist.gov/news-events/news/2022/09/back-future-gear-edition. doi: 10.4324/9781003029656-4http://dx.doi.org/10.4324/9781003029656-4
HARTIG F, LIN H, KNIEL K, et al. Laser tracker performance quantification for the measurement of involute profile and helix measurements[J]. Measurement, 2013, 46(8): 2837-2844. doi: 10.1016/j.measurement.2013.04.037http://dx.doi.org/10.1016/j.measurement.2013.04.037
HÄRTIG F, LIN H, KNIEL K, et al. Standard conforming involute gear metrology using an articulated arm coordinate measuring system[J]. Measurement Science and Technology, 2012, 23(10): 105011. doi: 10.1088/0957-0233/23/10/105011http://dx.doi.org/10.1088/0957-0233/23/10/105011
陈洪芳,闫昊,石照耀. 面向特大型齿轮的激光跟踪多站位定位[J]. 光学 精密工程, 2014, 22(9): 2375-2380. doi: 10.3788/ope.20142209.2375http://dx.doi.org/10.3788/ope.20142209.2375
CHEN H F, YAN H, SHI ZH Y. Laser tracking multi-station positioning method for Mega-gear[J]. Opt. Precision Eng., 2014, 22(9): 2375-2380.(in Chinese). doi: 10.3788/ope.20142209.2375http://dx.doi.org/10.3788/ope.20142209.2375
郭天太, 孙培渊, 刘维, 等. 特大齿轮齿廓偏差测量方法的探究[J]. 工具技术, 2020, 54(6):64-67. doi: 10.3969/j.issn.1000-7008.2020.06.016http://dx.doi.org/10.3969/j.issn.1000-7008.2020.06.016
GUO T T, SUN P Y, LIU W, et al. Research on measuring method of tooth deviation of extra large gears[J]. Tool Engineering, 2020, 54(6):64-67.(in Chinese). doi: 10.3969/j.issn.1000-7008.2020.06.016http://dx.doi.org/10.3969/j.issn.1000-7008.2020.06.016
徐星, 王建华. 激光跟踪仪建立齿轮测量坐标系的不确定度分析[J]. 工具技术, 2022, 56(11):157-160. doi: 10.3969/j.issn.1000-7008.2022.11.030http://dx.doi.org/10.3969/j.issn.1000-7008.2022.11.030
XU X, WANG J H. Uncertainty analysis of gear measuring coordinate system established by laser tracker[J]. Tool Engineering, 2022, 56(11):157-160.(in Chinese). doi: 10.3969/j.issn.1000-7008.2022.11.030http://dx.doi.org/10.3969/j.issn.1000-7008.2022.11.030
石照耀, 张白, 林家春, 等. 特大型齿轮激光跟踪在位测量原理及关键技术[J]. 光学 精密工程, 2013, 21(9): 2340-2347. doi: 10.3788/ope.20132109.2340http://dx.doi.org/10.3788/ope.20132109.2340
SHI ZH Y, ZHANG B, LIN J CH, et al. Principle and critical technology of in-site measurement system with laser tracker for mega gear[J]. Opt. Precision Eng., 2013, 21(9): 2340-2347.(in Chinese). doi: 10.3788/ope.20132109.2340http://dx.doi.org/10.3788/ope.20132109.2340
林虎, 薛梓, 杨国梁. 一种大齿轮多参量标准样板: CN211346733U[P]. 2020-08-25.
LIN H, XUE Z, YANG G L. Bull gear multi-parameter standard sample plate: CN211346733U[P]. 2020-08-25.(in Chinese)
凌四营, 石照耀, 宋洪侠, 等. 一种连轴装配式大齿轮渐开线样板: CN202111128774.9[P]. 2022-06-14.
LING S Y, SHI ZH Y, SONG H X, et al. A large gear involute artifact assembled with mandrel: 202111128774.9[P]. 2022-06-14.(in Chinese)
DAI G L, NEUGEBAUER M, STEIN M, et al. Overview of 3D micro- and nanocoordinate metrology at PTB[J]. Applied Sciences, 2016, 6(9): 257. doi: 10.3390/app6090257http://dx.doi.org/10.3390/app6090257
FERREIRA N, KRAH T, JEONG D C, et al. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears[J]. Measurement Science and Technology, 2014, 25(6): 064016. doi: 10.1088/0957-0233/25/6/064016http://dx.doi.org/10.1088/0957-0233/25/6/064016
METZ D, JANTZEN S, WESSEL D, et al. Integration of an isotropic microprobe and a microenvironment into a conventional CMM[J]. Measurement Science and Technology, 2019, 30(11): 115007. doi: 10.1088/1361-6501/ab2fdahttp://dx.doi.org/10.1088/1361-6501/ab2fda
石照耀, 赵保亚, 于渤, 等. 齿轮特征线统一模型及在齿轮三维误差评定中的应用[J]. 机械工程学报, 2022, 58(24): 1-9. doi: 10.3901/jme.2022.24.001http://dx.doi.org/10.3901/jme.2022.24.001
SHI ZH Y, ZHAO B Y, YU B, et al. Unified model of gear characteristic line and its application in gear three-dimensional error evaluation[J]. Journal of Mechanical Engineering, 2022, 58(24): 1-9.(in Chinese). doi: 10.3901/jme.2022.24.001http://dx.doi.org/10.3901/jme.2022.24.001
石照耀, 赵保亚, 于渤, 等. 齿轮三维误差表征与分解[J]. 机械工程学报, 2022, 58(6): 1-9. doi: 10.3901/jme.2022.06.001http://dx.doi.org/10.3901/jme.2022.06.001
SHI ZH Y, ZHAO B Y, YU B, et al. Characterization and decomposition of three-dimensional error of gear[J]. Journal of Mechanical Engineering, 2022, 58(6): 1-9.(in Chinese). doi: 10.3901/jme.2022.06.001http://dx.doi.org/10.3901/jme.2022.06.001
SHI Z Y, SUN Y Q, WANG X Y, et al. Acquisition and assessment of gear holistic deviations based on laser measurement[J]. Photonics, 2022, 9(10): 735. doi: 10.3390/photonics9100735http://dx.doi.org/10.3390/photonics9100735
GUO X, SHI Z, YU B, et al. 3D measurement of gears based on a line structured light sensor[J]. Precision Engineering, 2020, 61: 160-169. doi: 10.1016/j.precisioneng.2019.10.013http://dx.doi.org/10.1016/j.precisioneng.2019.10.013
KLINGELNBERG. Klingelnberg Hybrid Metrology[EB/OL]. (2023-05-06)[2023-05-06]. https://klingelnberg.com/en/business-divisions/precision-measuring-centers/hybrid-metrologyhttps://klingelnberg.com/en/business-divisions/precision-measuring-centers/hybrid-metrology.
GLEASON. Multi-Sensor Inspection Machines for High Precision Parts[EB/OL]. (2023-05-06)[2023-05-06]. https://www.gleason.com/en/products/metrology/metrology-systems/analytical-inspection/gmsl-series-multi-sensor-inspection-including-laser-technologyhttps://www.gleason.com/en/products/metrology/metrology-systems/analytical-inspection/gmsl-series-multi-sensor-inspection-including-laser-technology.
FUJIO H, KUBO A, SAITOH S, et al. Laser holographic measurement of tooth flank form of cylindrical involute gear[J]. Journal of Mechanical Design, 1994, 116(3): 721-729. doi: 10.1115/1.2919442http://dx.doi.org/10.1115/1.2919442
FANG S, WANG L, KOMORI M, et al. Design of laser interferometric system for measurement of gear tooth flank[J]. Optik, 2011, 122(14): 1301-1304. doi: 10.1016/j.ijleo.2010.09.002http://dx.doi.org/10.1016/j.ijleo.2010.09.002
YANG P, YANG S, XIAO Y, et al. Calibration of geometric distortion based on a reference sheet in oblique laser interferometry[J]. Optik, 2019, 183: 47-54. doi: 10.1016/j.ijleo.2019.02.051http://dx.doi.org/10.1016/j.ijleo.2019.02.051
GADELMAWLA E S. Computer vision algorithms for measurement and inspection of spur gears[J]. Measurement, 2011, 44(9): 1669-1678. doi: 10.1016/j.measurement.2011.06.023http://dx.doi.org/10.1016/j.measurement.2011.06.023
石照耀, 方一鸣, 王笑一. 齿轮视觉检测仪器与技术研究进展[J]. 激光与光电子学进展, 2022, 59(14): 1415006.
SHI ZH Y, FANG Y M, WANG X Y. Research progress in gear machine vision inspection instrument and technology[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415006.(in Chinese)
DONG L, CHEN W F, YANG S Y, et al. A new machine vision-based intelligent detection method for gear grinding burn[J].The International Journal of Advanced Manufacturing Technology, 2023, 125(9/10): 4663-4677. doi: 10.1007/s00170-023-11021-zhttp://dx.doi.org/10.1007/s00170-023-11021-z
ALLAM A, MOUSSA M, TARRY C, et al. Detecting teeth defects on automotive gears using deep learning[J]. Sensors, 2021, 21(24): 8480. doi: 10.3390/s21248480http://dx.doi.org/10.3390/s21248480
王宁, 段振云, 赵文辉, 等. 齿轮齿廓总偏差视觉测量方法研究[J]. 机械传动, 2017, 41(11): 28-32.
WANG N, DUAN ZH Y, ZHAO W H, et al. Research on visual measurement method of total deviation of gear tooth profile[J]. Journal of Mechanical Transmission, 2017, 41(11): 28-32.(in Chinese)
汤洁, 刘小兵, 李睿. 未知参数小模数齿轮齿距和齿廓偏差视觉测量[J]. 光学 精密工程, 2021, 29(1):100-109. doi: 10.37188/OPE.20212901.0100http://dx.doi.org/10.37188/OPE.20212901.0100
TANG J, LIU X B, LI R. Vision measurement of pitch and profile deviations for small modulus gears with unknown parameters[J]. Opt. Precision Eng., 2021, 29(1): 100-109.(in Chinese). doi: 10.37188/OPE.20212901.0100http://dx.doi.org/10.37188/OPE.20212901.0100
KOULIN G, ZHANG J, FRAZER R C, et al. A new profile roughness measurement approach for involute helical gears[J]. Measurement Science and Technology, 2017, 28(5): 055004. doi: 10.1088/1361-6501/aa5d96http://dx.doi.org/10.1088/1361-6501/aa5d96
林家春, 滕辰, 李晗晓, 等. 基于粗糙度轮廓仪的圆柱齿轮齿廓形状偏差测量[J]. 仪器仪表学报, 2020, 41(12): 15-22.
LIN J CH, TENG CH, LI H X, et al. Tooth profile deviation measurement of cylindrical gears based on a roughness profilometer[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 15-22.(in Chinese)
石照耀, 于渤, 宋辉旭, 等. 20年来齿轮测量技术的发展[J]. 中国机械工程, 2022, 33(9): 1009-1024. doi: 10.3969/j.issn.1004-132X.2022.09.001http://dx.doi.org/10.3969/j.issn.1004-132X.2022.09.001
SHI ZH Y, YU B, SONG H X, et al. Development of gear measurement technology during last 20 years[J]. China Mechanical Engineering, 2022, 33(9): 1009-1024.(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.09.001http://dx.doi.org/10.3969/j.issn.1004-132X.2022.09.001
ISO. Gears-Cylindrical involute gears and gear pairs-Concepts and geometry21771-2007 ISO [S]. Geneval: International Standards Organization, 2007.
凌明, 凌四营, 刘远航, 等. 测头半径对1级渐开线样板齿廓偏差测量的影响[J]. 仪器仪表学报, 2022, 43(4): 121-128.
LING M, LING S Y, LIU Y H, et al. Effect of probe radius on the measurement for profile deviations of class-1 gear involute artefact[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 121-128.(in Chinese)
LING M, LING S Y, LI X Y, et al. Effect on the measurement for gear involute profile caused by the error of probe position[J]. Measurement Science and Technology, 2022, 33(11): 115013. doi: 10.1088/1361-6501/ac819fhttp://dx.doi.org/10.1088/1361-6501/ac819f
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构