1.清华大学 精密仪器系,北京 100084
[ "王楚宁(2000-),女,辽宁大连人,硕士研究生,2022年于清华大学获得学士学位,主要从事仿生偏振导航传感器的相关研究。E-mail: wcn22@mails.tsinghua.edu.cn" ]
[ "赵开春(1973-),男,辽宁大连人,博士,副研究员,清华大学精密仪器系教师,研究领域为仿生微纳光栅阵列器件的设计、制备与测试,仿生导航传感器系统的设计、构建与环境试验,微小卫星的姿态测量与控制技术。E-mail: kaichunz@mail.tsinghua.edu.cn" ]
扫 描 看 全 文
王楚宁,赵开春.基于暗通道先验原理的偏振图像去雾[J].光学精密工程,2023,31(23):3474-3481.
WANG Chuning,ZHAO Kaichun.Polarization image defogging based on dark channel prior principle[J].Optics and Precision Engineering,2023,31(23):3474-3481.
王楚宁,赵开春.基于暗通道先验原理的偏振图像去雾[J].光学精密工程,2023,31(23):3474-3481. DOI: 10.37188/OPE.20233123.3474.
WANG Chuning,ZHAO Kaichun.Polarization image defogging based on dark channel prior principle[J].Optics and Precision Engineering,2023,31(23):3474-3481. DOI: 10.37188/OPE.20233123.3474.
雾霾天气下大气粒子对光的散射作用会导致成像质量下降,影响目标探测以及关键信息提取。针对目前偏振去雾算法存在的不足,提出一种基于偏振暗通道的去雾方法。通过4个不同角度的偏振光强解算偏振信息,从而得到任意角度的偏振光强,然后,结合暗通道先验原理定义偏振图像暗通道,从中获取无穷远处大气光强度信息,计算得到大气传输率,最后构建大气散射模型,得到去雾图像。实验结果表明:该方法处理后的去雾图像的灰度方差、平均梯度和图像熵几项评价指标均比原图像显著提高,灰度方差提升了25%,平均梯度提升了30%,图像熵提升了5%。该方法能够有效改善雾霾天气下的图像质量,提高图像清晰度,且图像的细节更为丰富。
In hazy weather, the image quality is decreased owing to the scattering effect of atmospheric particles on light, which can affect target detection and key information extraction. In response to the shortcomings of current polarization defogging algorithms, this study proposes a defogging method based on polarization dark channel. First, polarization information is calculated through the polarized light intensity of four different angles, to obtain the polarized light intensity of any angle. Thereafter, based on the dark channel prior principle, the dark channel of the polarized image is defined. The atmospheric light intensity at infinity is obtained, and the atmospheric transmission rate is calculated. Finally, the atmospheric scattering model is constructed to obtain a defogging image. The experimental results demonstrate that the evaluation indicators of grayscale variance, average gradient, and image entropy of the defogged image processed by this method are significantly improved compared to those of the original image. The grayscale variance, average gradient, and image entropy are increased by 25%, 30%, and 5%, respectively. This method can effectively improve the quality and clarity of images in hazy weather and enrich image details.
偏振图像图像去雾暗通道先验原理
polarization imageimage defoggingdark channelprior principle
吕建威, 钱锋, 韩昊男, 等. 结合天空分割和雾气浓度估计的图像去雾[J]. 光学 精密工程, 2022, 30(4):464-477. doi: 10.37188/OPE.20223004.0464http://dx.doi.org/10.37188/OPE.20223004.0464
LÜ J W, QIAN F, HAN H N, et al. Single image dehazing with sky segmentation and haze density estimation[J]. Opt. Precision Eng., 2022, 30(4):464-477. (in Chinese). doi: 10.37188/OPE.20223004.0464http://dx.doi.org/10.37188/OPE.20223004.0464
张晶晶, 陈自红, 张德祥, 等. 基于暗原色先验原理的偏振图像浓雾去除算法[J]. 计算机应用, 2015, 35(12):3576-3580. doi: 10.11772/j.issn.1001-9081.2015.12.3576http://dx.doi.org/10.11772/j.issn.1001-9081.2015.12.3576
ZHANG J J, CHEN Z H, ZHANG D X, et al. Polarized image dehazing algorithm based on dark channel prior[J]. Journal of Computer Applications, 2015, 35(12):3576-3580. (in Chinese). doi: 10.11772/j.issn.1001-9081.2015.12.3576http://dx.doi.org/10.11772/j.issn.1001-9081.2015.12.3576
MCCARTNEY E J, JrHALL F F. Optics of the atmosphere: scattering by molecules and particles[J]. Physics Today, 1977, 30(5): 76-77. doi: 10.1063/1.3037551http://dx.doi.org/10.1063/1.3037551
SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, HI, USA. IEEE Comput. Soc, 2001.DOI:10.1109/CVPR.2001.990493http://dx.doi.org/10.1109/CVPR.2001.990493.
SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511. doi: 10.1364/ao.42.000511http://dx.doi.org/10.1364/ao.42.000511
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/tpami.2010.168http://dx.doi.org/10.1109/tpami.2010.168
周浦城, 薛模根, 张洪坤, 等. 利用偏振滤波的自动图像去雾[J]. 中国图象图形学报, 2011, 16(7): 1178-1183. doi: 10.11834/jig.20110717http://dx.doi.org/10.11834/jig.20110717
ZHOU P CH, XUE M G, ZHANG H K, et al. Automatic image dehaze using polarization filtering[J]. Journal of Image and Graphics, 2011, 16(7): 1178-1183.(in Chinese). doi: 10.11834/jig.20110717http://dx.doi.org/10.11834/jig.20110717
ZHANG L, YIN Z J, ZHAO K C, et al. Lane detection in dense fog using a polarimetric dehazing method[J]. Applied Optics, 2020, 59(19): 5702-5707. doi: 10.1364/ao.391840http://dx.doi.org/10.1364/ao.391840
姜雨彤, 杨忠琳, 朱梦琪, 等. 适应性双通道先验的图像去雾方法[J]. 光学 精密工程, 2022, 30(10): 1246-1262. doi: 10.37188/ope.20223010.1246http://dx.doi.org/10.37188/ope.20223010.1246
JIANG Y T, YANG ZH L, ZHU M Q, et al. Image dehazing method based on adaptive bi-channel priors[J]. Opt. Precision Eng., 2022, 30(10): 1246-1262.(in Chinese). doi: 10.37188/ope.20223010.1246http://dx.doi.org/10.37188/ope.20223010.1246
傅妍芳, 尹诗白, 邓箴, 等. 多级特征逐步细化及边缘增强的图像去雾[J]. 光学 精密工程, 2022, 30(9):1091-1100. doi: 10.37188/OPE.20223009.1091http://dx.doi.org/10.37188/OPE.20223009.1091
FU Y F, YIN SH B, DENG ZH, et al. Multi-level features progressive refinement and edge enhancement network for image dehazing[J]. Opt. Precision Eng., 2022, 30(9):1091-1100. (in Chinese). doi: 10.37188/OPE.20223009.1091http://dx.doi.org/10.37188/OPE.20223009.1091
游江, 刘鹏祖, 容晓龙, 等. 基于暗通道先验原理的偏振图像去雾增强算法研究[J]. 激光与红外, 2020, 50(4):493-500. doi: 10.3969/j.issn.1001-5078.2020.04.019http://dx.doi.org/10.3969/j.issn.1001-5078.2020.04.019
YOU J, LIU P Z, RONG X L, et al. Dehazing and enhancement research of polarized image based on dark channel priori principle[J]. Laser & Infrared, 2020, 50(4):493-500. (in Chinese). doi: 10.3969/j.issn.1001-5078.2020.04.019http://dx.doi.org/10.3969/j.issn.1001-5078.2020.04.019
汪杰君, 杨杰, 张文涛, 等. 雾天偏振成像影响分析及复原方法研究[J]. 激光技术, 2016, 40(4):521-525. doi: 10.7510/jgjs.issn.1001-3806.2016.04.014http://dx.doi.org/10.7510/jgjs.issn.1001-3806.2016.04.014
WANG J J, YANG J, ZHANG W T, et al. Analysis and restoration research of fog polarization imaging[J]. Laser Technology, 2016, 40(4):521-525. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2016.04.014http://dx.doi.org/10.7510/jgjs.issn.1001-3806.2016.04.014
CANTOR A. Optics of the atmosphere: scattering by molecules and particles[J]. IEEE Journal of Quantum Electronics, 1978, 14(9): 698-699. doi: 10.1109/jqe.1978.1069864http://dx.doi.org/10.1109/jqe.1978.1069864
HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/tpami.2012.213http://dx.doi.org/10.1109/tpami.2012.213
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构