1.西安科技大学 电气与控制工程学院,陕西 西安 710054
[ "郝 帅(1986-),男,博士,副教授,硕士生导师,主要从事人工智能、智能电网方面的研究工作。E-mail:haoxust@163.com" ]
扫 描 看 全 文
郝帅,李彤,马旭等.基于目标增强与蝴蝶优化的红外与可见光图像融合[J].光学精密工程,2023,31(23):3490-3503.
HAO Shuai,LI Tong,MA Xu,et al.Infrared and visible image fusion based on target enhancement and butterfly optimization[J].Optics and Precision Engineering,2023,31(23):3490-3503.
郝帅,李彤,马旭等.基于目标增强与蝴蝶优化的红外与可见光图像融合[J].光学精密工程,2023,31(23):3490-3503. DOI: 10.37188/OPE.20233123.3490.
HAO Shuai,LI Tong,MA Xu,et al.Infrared and visible image fusion based on target enhancement and butterfly optimization[J].Optics and Precision Engineering,2023,31(23):3490-3503. DOI: 10.37188/OPE.20233123.3490.
针对传统红外与可见光图像融合结果存在目标模糊、纹理细节丢失以及伪影等问题,提出一种基于目标增强与蝴蝶优化的红外与可见光图像融合算法。针对红外图像因成像机理导致的融合目标边缘模糊问题,构造基于目标边缘强化的红外图像增强模块;为解决因可见光图像质量较低而造成的融合图像细节缺失问题,搭建基于带色彩恢复因子的多尺度Retinex可见光增强模块;然后,利用四阶偏微分方程-主成分分析法对红外和可见光增强图像分别进行边缘平滑处理,以解决融合结果存在的伪影问题;最后,为使最终融合结果突出目标的同时保留更多的纹理细节,设计了基于蝴蝶优化的图像重建模块,以实现重建图像权重的自适应分配。为验证所提出算法的优势,将所提出的算法在TNO,INO,M3FD以及RoadScene数据集上与6种经典算法进行比较。实验结果表明,相比于对比算法,本文算法的信息熵、空间频率、均方差、联合熵、视觉信息保真度和自然场景6个客观评价指标上分别平均提高了9.24%,38.88%,51.11%,4.65%,35.44%,19.36%,融合结果目标边缘清晰、对比度强、无伪影且纹理细节丰富。
A fusion method for infrared and visible images was developed based on target enhancement and butterfly optimization to address the problems of target blurring, textural detail loss, and artifacts in traditional infrared and visible image fusion results. First, to deal with the blurring of the fusion target edge caused by the imaging mechanism of the infrared image, an infrared image enhancement module based on target edge enhancement was constructed. Second, a visible light enhancement module based on multiscale Retinex with color restoration was developed to solve the problem of missing details in fused images caused by the low quality of visible images. Third, fourth-order partial differential equations and the principal component analysis method were used to smooth out the edges of infrared and visible enhanced images to solve the problem of artifacts in the fusion results. Finally, an image reconstruction module based on butterfly optimization was designed for the adaptive allocation of reconstructed image weights. This allows the target to be highlighted in the final fusion result while retaining more textural details. To verify the advantages of the proposed algorithm, it was compared with six classic algorithms on the TNO, INO, M3FD, and RoadScene datasets. The experimental results show that the fusion results obtained by the proposed algorithm have clear edges, strong contrast, no artifacts, and rich textural details. Compared with the other algorithms, the objective evaluation indicators EN, SF, SD, JE, VIF, and NSS are improved by an average of 9.24%, 38.88%, 51.11%, 4.65%, 35.44% and 19.36%, respectively.
图像融合红外图像可见光图像多尺度蝴蝶优化
image fusioninfrared imagevisible imagemulti-scalebutterfly optimization
胡建平, 郝梦云, 杜影, 等. 结构和纹理感知的Retinex融合红外与可见光图像[J]. 光学 精密工程, 2022, 30(24):3225-3238. doi: 10.37188/ope.20223024.3225http://dx.doi.org/10.37188/ope.20223024.3225
HU J P, HAO M Y, DU Y, et al. Fusion of infrared and visible images via structure and texture-aware retinex[J]. Opt. Precision Eng., 2022, 30(24):3225-3238. (in Chinese). doi: 10.37188/ope.20223024.3225http://dx.doi.org/10.37188/ope.20223024.3225
ZHOU T, LI Q, LU H L, et al. GAN review: models and medical image fusion applications[J]. Information Fusion, 2023, 91: 134-148. doi: 10.1016/j.inffus.2022.10.017http://dx.doi.org/10.1016/j.inffus.2022.10.017
王满利, 王晓龙, 张长森. 基于动态范围压缩增强和NSST的红外与可见光图像融合算法[J]. 光子学报, 2022, 51(9): 0910002. doi: 10.3788/gzxb20225109.0910002http://dx.doi.org/10.3788/gzxb20225109.0910002
WANG M L, WANG X L, ZHANG CH S. Infrared and visible image fusion algorithm based on dynamic range compression enhancement and NSST[J]. Acta Photonica Sinica, 2022, 51(9): 0910002.(in Chinese). doi: 10.3788/gzxb20225109.0910002http://dx.doi.org/10.3788/gzxb20225109.0910002
LI H, WU X J, TARIQ S D. Infrared and visible image fusion with ResNet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019, 102: 103039. doi: 10.1016/j.infrared.2019.103039http://dx.doi.org/10.1016/j.infrared.2019.103039
朱雯青, 汤心溢, 张瑞, 等. 基于边缘保持和注意力生成对抗网络的红外与可见光图像融合[J]. 红外与毫米波学报, 2021, 40(5):696-708. doi: 10.11972/j.issn.1001-9014.2021.05.017http://dx.doi.org/10.11972/j.issn.1001-9014.2021.05.017
ZHU W Q, TANG X Y, ZHANG R, et al. Infrared and visible image fusion based on edge-preserving and attention generative adversarial network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5):696-708. (in Chinese). doi: 10.11972/j.issn.1001-9014.2021.05.017http://dx.doi.org/10.11972/j.issn.1001-9014.2021.05.017
陈永, 张娇娇, 王镇. 多尺度密集连接注意力的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(18):2253-2266. doi: 10.37188/ope.20223018.2253http://dx.doi.org/10.37188/ope.20223018.2253
CHEN Y, ZHANG J J, WANG ZH. Infrared and visible image fusion based on multi-scale dense attention connection network[J]. Opt. Precision Eng., 2022, 30(18):2253-2266. (in Chinese). doi: 10.37188/ope.20223018.2253http://dx.doi.org/10.37188/ope.20223018.2253
HAO S, HE T, AN B, et al. VDFEFuse: a novel fusion approach to infrared and visible images[J]. Infrared Physics & Technology, 2022, 121: 104048. doi: 10.1016/j.infrared.2022.104048http://dx.doi.org/10.1016/j.infrared.2022.104048
JIANG J W, LIU L, WANG L P, et al. Fusion of visible and infrared images based on multiple differential gradients[J]. Journal of Modern Optics, 2020, 67(4): 329-339. doi: 10.1080/09500340.2020.1718789http://dx.doi.org/10.1080/09500340.2020.1718789
BAVIRISETTI D P, DHULI R. Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform[J]. IEEE Sensors Journal, 2016, 16(1): 203-209. doi: 10.1109/jsen.2015.2478655http://dx.doi.org/10.1109/jsen.2015.2478655
ZHOU T, CHENG Q R, LU H L, et al. Deep learning methods for medical image fusion: a review[J]. Computers in Biology and Medicine, 2023, 160: 106959. doi: 10.1016/j.compbiomed.2023.106959http://dx.doi.org/10.1016/j.compbiomed.2023.106959
LI G F, LIN Y J, QU X D. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 2021, 71: 109-129. doi: 10.1016/j.inffus.2021.02.008http://dx.doi.org/10.1016/j.inffus.2021.02.008
MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. doi: 10.1016/j.inffus.2018.02.004http://dx.doi.org/10.1016/j.inffus.2018.02.004
LIU Y, CHEN X, WANG Z F, et al. Deep learning for pixel-level image fusion: recent advances and future prospects[J]. Information Fusion, 2018, 42: 158-173. doi: 10.1016/j.inffus.2017.10.007http://dx.doi.org/10.1016/j.inffus.2017.10.007
LIU Y, CHEN X, WANG Z F, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. doi: 10.1016/j.inffus.2018.09.004http://dx.doi.org/10.1016/j.inffus.2018.09.004
杨艳春, 高晓宇, 党建武, 等. 基于WEMD和生成对抗网络重建的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(3):320-330. doi: 10.37188/OPE.20223003.0320http://dx.doi.org/10.37188/OPE.20223003.0320
YANG Y CH, GAO X Y, DANG J W, et al. Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction[J]. Opt. Precision Eng., 2022, 30(3):320-330. (in Chinese). doi: 10.37188/OPE.20223003.0320http://dx.doi.org/10.37188/OPE.20223003.0320
曹宇彤, 宦克为, 薛超, 等. 基于卷积神经网络结合NSCT的红外与可见光图像融合[J]. 红外技术, 2023, 45(4): 378-385.
CAO Y T, HUAN K W, XUE CH, et al. Infrared and visible image fusion based on CNN with NSCT[J]. Infrared Technology, 2023, 45(4): 378-385.(in Chinese)
LI Q Q, HAN G L, LIU P X, et al. A multilevel hybrid transmission network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14. doi: 10.1109/tim.2022.3186048http://dx.doi.org/10.1109/tim.2022.3186048
HAO S, HE T, MA X, et al. NOSMFuse: an infrared and visible image fusion approach based on norm optimization and slime mold architecture[J].Applied Intelligence, 2023, 53(5): 5388-5401.
LIU Y H, YAN H M, GAO S B, et al. Criteria to evaluate the fidelity of image enhancement by MSRCR[J]. IET Image Processing, 2018, 12(6): 880-887. doi: 10.1049/iet-ipr.2017.0171http://dx.doi.org/10.1049/iet-ipr.2017.0171
崔晓荣, 沈涛, 黄建鲁, 等. FABEMD和改进局部能量窗口的红外中波和长波图像融合[J]. 光谱学与光谱分析, 2021, 41(7):2043-2049. doi: 10.3964/j.issn.1000-0593(2021)07-2043-07http://dx.doi.org/10.3964/j.issn.1000-0593(2021)07-2043-07
CUI X R, SHEN T, HUANG J L, et al. Inf rared mid-wave and long-wave image fusion based on FABEMD and improved local energy window[J]. Spectroscopy and Spectral Analysis, 2021, 41(7):2043-2049. (in Chinese). doi: 10.3964/j.issn.1000-0593(2021)07-2043-07http://dx.doi.org/10.3964/j.issn.1000-0593(2021)07-2043-07
SHAMS I, MEKHILEF S, TEY K S. Maximum power point tracking using modified butterfly optimization algorithm for partial shading, uniform shading, and fast varying load conditions[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5569-5581. doi: 10.1109/tpel.2020.3029607http://dx.doi.org/10.1109/tpel.2020.3029607
ALEXANDER T. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249-251. doi: 10.1016/j.dib.2017.09.038http://dx.doi.org/10.1016/j.dib.2017.09.038
LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022. New Orleans, LA, USA. IEEE, 2022: 5792-5801.
XU H, MA J Y, JIANG J J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. doi: 10.1109/tpami.2020.3012548http://dx.doi.org/10.1109/tpami.2020.3012548
ZHOU Z Q, WANG B, LI S, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15-26. doi: 10.1016/j.inffus.2015.11.003http://dx.doi.org/10.1016/j.inffus.2015.11.003
LIU Y, CHEN X, CHENG J, et al. A medical image fusion method based on convolutional neural networks[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi'an, China,2017:10-13. doi: 10.23919/icif.2017.8009769http://dx.doi.org/10.23919/icif.2017.8009769
ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. doi: 10.1016/j.inffus.2019.07.011http://dx.doi.org/10.1016/j.inffus.2019.07.011
LI H, WU X J, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. doi: 10.1016/j.inffus.2021.02.023http://dx.doi.org/10.1016/j.inffus.2021.02.023
LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. doi: 10.1109/tip.2018.2887342http://dx.doi.org/10.1109/tip.2018.2887342
LI H, WU X J, DURRANI T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656. doi: 10.1109/tim.2020.3005230http://dx.doi.org/10.1109/tim.2020.3005230
杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7): 1021-1035. doi: 10.3778/j.issn.1673-9418.1710001http://dx.doi.org/10.3778/j.issn.1673-9418.1710001
YANG Y CH, LI J, WANG Y P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(7): 1021-1035.(in Chinese). doi: 10.3778/j.issn.1673-9418.1710001http://dx.doi.org/10.3778/j.issn.1673-9418.1710001
DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31. doi: 10.1109/tevc.2010.2059031http://dx.doi.org/10.1109/tevc.2010.2059031
SENTHILNATH J, OMKAR S N, MANI V. Clustering using firefly algorithm: performance study[J]. Swarm and Evolutionary Computation, 2011, 1(3): 164-171. doi: 10.1016/j.swevo.2011.06.003http://dx.doi.org/10.1016/j.swevo.2011.06.003
MORRIS G M, GOODSELL D S, HALLIDAY R S, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of Computational Chemistry, 1998, 19(14): 1639-1662. doi: 10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-bhttp://dx.doi.org/10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b
PARK J B, LEE K S, SHIN J R, et al. A particle swarm optimization for economic dispatch with nonsmooth cost functions[J]. IEEE Transactions on Power Systems,2005,20(1):34-42. doi: 10.1109/tpwrs.2004.831275http://dx.doi.org/10.1109/tpwrs.2004.831275
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构