1.广西师范大学 电子与信息工程学院,广西 桂林 541004
2.广西师范大学 智能机器人实验室,广西 桂林 541004
[ "李文浩(2000-),男,浙江杭州人,主要研究方向为嵌入式系统及自动控制。E-mail:liwenhao@stu.gxnu.edu.cn" ]
[ "秦运柏(1982-),男,桂林全州人,讲师,2008年、2011年于吉林大学分别获得学士和硕士学位,现为广西师范大学电子与信息工程学院机器人负责人,主要从事物联网和智能机器人的研究。E-mail:qinyunbai@gxnu.edu.cn" ]
扫 描 看 全 文
李文浩,谭宇飞,周登科等.融合多光学传感及变积分PID算法的搬运机器人[J].光学精密工程,2023,31(23):3504-3516.
LI Wenhao,TAN Yufei,ZHOU Dengke,et al.Transport robot integrating multi channel optical sensing and variable integral pid algorithm[J].Optics and Precision Engineering,2023,31(23):3504-3516.
李文浩,谭宇飞,周登科等.融合多光学传感及变积分PID算法的搬运机器人[J].光学精密工程,2023,31(23):3504-3516. DOI: 10.37188/OPE.20233123.3504.
LI Wenhao,TAN Yufei,ZHOU Dengke,et al.Transport robot integrating multi channel optical sensing and variable integral pid algorithm[J].Optics and Precision Engineering,2023,31(23):3504-3516. DOI: 10.37188/OPE.20233123.3504.
为解决搬运机器人无法在复杂光环境下实现精准循迹等问题,提出适用于智能搬运机器人的融合多光学传感和变积分PID方法。将短波长激光器与多路灰度传感器相结合,实时采样循迹轨迹并应用滑动平均滤波算法预处理其采集信息,计算数据与平衡状态的偏差,再对其加权累加融合后作为变积分PID算法的输入量,收敛距离可缩短至10 cm以内。在此基础上,在搬运机器人本体增加抓取物块结构,以拓展搬运机器人作业的灵活性和适用性,采用4自由度机械臂、气泵和载物台组成灵活抓取结构。实验结果表明,在室内光线和室外自然光环境下,该算法可在3 min内实现二维码识别、稳定循迹和物块搬运等功能,且机器人的任务准确率均为100%。变积分PID算法能够增强搬运机器人循迹的实时反馈,加快对循迹误差的响应能力,提高了搬运机器人循迹的稳定性和环境适应性。
This paper proposes a fusion of multiplexed optical sensors and variable integral PID methods for intelligent handling robots to deal with their inability to realize accurate trajectories in complex environments. First, a short-wavelength semiconductor laser sensor and multiple grayscale sensors were used to sample the trajectory in real time, and the collected data were preprocessed by applying the sliding average filtering algorithm. Then, the deviation of the data from the equilibrium state was calculated using a combined multi-optical sensing and variable integral PID control algorithm. The accumulation and fusion were weighted, which serves as the input of the variable integral PID control algorithm and reduces the convergence distance to 10 cm. Finally, to expand the applicability of the gripping structure of the object block, a four degrees-of-freedom robotic arm, extractor pump, and load table were used to form a grasping structure. The experimental results show that the algorithm can perform the functions of QR code recognition, stable trajectory, and block grasping and handling in 3 min, in both indoor and outdoor environments. The robot has a task handling accuracy rate of 100%. The algorithm improved the stability and environmental adaptability of the trajectory of the handling robot, strengthened the real-time feedback of the robot route in the process of handling the trajectory, and accelerated the robot's response to the trajectory error, which is of great significance for automation technology.
光电搬运机器人半导体激光PID控制算法二维码识别
photoelectric handling robotsemiconductor laserPID control algorithmQR code recognition
ZHAO Y. Dynamic path planning analysis of warehouse handling robot[J]. Journal of Sensors, 2022, 2022: 1-7. doi: 10.1155/2022/4434971http://dx.doi.org/10.1155/2022/4434971
WU Y Z, GE D Y. Key technologies of warehousing robot for intelligent logistics[C]. Proceedings of The First International Symposium on Management and Social Sciences (ISMSS 2019). April 13-14, 2019. Wuhan, China. Paris, France: Atlantis Press, 2019: 79-82.
ZHANG Z Y, ZHAO Z P. A multiple mobile robots path planning algorithm based on A-star and dijkstra algorithm[J]. International Journal of Smart Home, 2014, 8(3): 75-86. doi: 10.14257/ijsh.2014.8.3.07http://dx.doi.org/10.14257/ijsh.2014.8.3.07
张长勇, 王兴财, 步亚, 等. 移动机器人搬运物料目标定位优化仿真[J]. 计算机仿真, 2018, 35(2): 257-261. doi: 10.3969/j.issn.1006-9348.2018.02.054http://dx.doi.org/10.3969/j.issn.1006-9348.2018.02.054
ZHANG CH Y, WANG X C, BU Y, et al. Optimization of mobile robot target localization for material handling[J]. Computer Simulation, 2018, 35(2): 257-261. (in Chinese). doi: 10.3969/j.issn.1006-9348.2018.02.054http://dx.doi.org/10.3969/j.issn.1006-9348.2018.02.054
尹姝, 周海海, 仇翔. 磁带导引AGV的自抗扰循迹控制方法[J]. 高技术通讯, 2018, 28(6): 547-552. doi: 10.3772/j.issn.1002-0470.2018.06.008http://dx.doi.org/10.3772/j.issn.1002-0470.2018.06.008
YIN SH, ZHOU H H, QIU X. An ADRC approach to trajectory tracking control of tape guided AGV[J]. Chinese High Technology Letters, 2018, 28(6): 547-552. (in Chinese). doi: 10.3772/j.issn.1002-0470.2018.06.008http://dx.doi.org/10.3772/j.issn.1002-0470.2018.06.008
THEODORIDOU C, ANTONOPOULOS D, KARGAKOS A, et al. Robot navigation in human populated unknown environments based on visual-laser sensor fusion[C]. Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments. 29 June 2022, Corfu, Greece. New York: ACM, 2022: 336-342. doi: 10.1145/3529190.3534740http://dx.doi.org/10.1145/3529190.3534740
JIA Z, BALASURIYA A, CHALLA S. Autonomous vehicles navigation with visual target tracking: technical approaches[J]. Algorithms, 2008, 1(2): 153-182. doi: 10.3390/a1020153http://dx.doi.org/10.3390/a1020153
FANG Q, XU X, WANG X T, et al. Target-driven visual navigation in indoor scenes using reinforcement learning and imitation learning[J]. CAAI Transactions on Intelligence Technology, 2022, 7(2): 167-176. doi: 10.1049/cit2.12043http://dx.doi.org/10.1049/cit2.12043
高婉婷, 曳永芳. 基于STM32智能小车避障系统的设计[J]. 物联网技术, 2023, 13(2):131-135.
GAO W T, YE Y. Design of an STM32 intelligent car obstacle avoidance system [J]. Internet of Things Technologies, 2023, 13(2):131-135.(in Chinese)
宋海龙, 徐庆华, 丁芃, 等. 智能物流搬运机器人的设计[J]. 湖北理工学院学报, 2023, 39(2): 7-10, 53.
SONG H L, XU Q H, DING P, et al. Design of intelligent logistics conveying robot[J]. Journal of Hubei Polytechnic University, 2023, 39(2): 7-10, 53.(in Chinese)
洪一民, 钱庆丰, 章志飞. 基于STM32的智能小车循迹避障测距的设计[J]. 物联网技术, 2022, 12(1):12-13,17.
HONG Y M, QIAN Q F, ZHANG ZH F. Design of intelligent vehicle tracking and obstacle avoidance distance measurement based on STM32 [J]. Internet of Things Technologies, 2022, 12(1):12-13,17.(in Chinese)
程苡凡, 刘文飞, 白焕鑫. 基于STM32的寻宝旅游机器人小车设计[J]. 科技创新与应用, 2022(22):40-43.
CHENG Y F, LIU W F, BAI H X. Design of a treasure hunting tourism robot car based on STM32 [J]. Technology Innovation and Application, 2022(22):40-43.(in Chinese)
杨利, 杨述, 陈柳松. 基于循迹传感器和PID算法的AGV小车行进系统[J]. 电子设计工程, 2019, 27(13): 148-152. doi: 10.3969/j.issn.1674-6236.2019.13.032http://dx.doi.org/10.3969/j.issn.1674-6236.2019.13.032
YANG L, YANG SH, CHEN L S. AGV travel system based on guiding-sensor and PID algorithm[J]. Electronic Design Engineering, 2019, 27(13): 148-152.(in Chinese). doi: 10.3969/j.issn.1674-6236.2019.13.032http://dx.doi.org/10.3969/j.issn.1674-6236.2019.13.032
肖岚, 袁银麟, 翁建文, 等. 基于振镜的准直光源功率稳定控制器[J]. 光学 精密工程, 2022, 30(24): 3189-3197. doi: 10.37188/ope.20223024.3189http://dx.doi.org/10.37188/ope.20223024.3189
XIAO L, YUAN Y L, WENG J W, et al. Power stability controller for collimating-light source based on scanlab[J]. Opt. Precision Eng., 2022, 30(24): 3189-3197.(in Chinese). doi: 10.37188/ope.20223024.3189http://dx.doi.org/10.37188/ope.20223024.3189
邹离江. 人形机器人的硬件系统设计[D]. 广州: 广东工业大学, 2021.
ZOU L J. Hardware System Design of Humanoid Robots [D]. Guangzhou: Guangdong University of Technology,2021. (in Chinese)
邓语馨, 陈洪芳, 张爽, 等. 智能物流的轮式循迹机器人系统设计[J]. 工具技术, 2022, 56(6):57-60. doi: 10.3969/j.issn.1000-7008.2022.06.010http://dx.doi.org/10.3969/j.issn.1000-7008.2022.06.010
DENG Y X, CHEN H F, ZHANG SH, et al. Design of wheeled tracking robot system for intelligent logistics[J]. Tool Engineering, 2022, 56(6):57-60. (in Chinese). doi: 10.3969/j.issn.1000-7008.2022.06.010http://dx.doi.org/10.3969/j.issn.1000-7008.2022.06.010
范淇元, 覃羡烘, 黄文妹. 基于模块化控制的多功能智能搬运小车的设计[J]. 自动化与仪表, 2018, 33(11): 47-51.
FAN Q Y, QIN X H, HUANG W M. Design of multi-functional intelligent porter based on modular control[J]. Automation & Instrumentation, 2018, 33(11): 47-51. (in Chinese)
黄静月, 常博学, 王日霞. 探索电子电路实验项目化: 智能寻迹小车的设计[J]. 科技与创新, 2023(10):14-16.
HUANG J Y, CHANG B X, WANG R. Exploring project-based electronic circuit experiments-Design of intelligent tracking cars [J]. Automation & Instrumentation, 2023(10):14-16.(in Chinese)
吴辉, 司晨, 姜湖海, 等. 光电跟踪平台的观测自适应控制器[J]. 光学 精密工程, 2021, 29(6): 1311-1320. doi: 10.37188/OPE.2020.0700http://dx.doi.org/10.37188/OPE.2020.0700
WU H, SI CH, JIANG H H, et al. Observational adaptive controller for photoelectric tracking platform[J]. Opt. Precision Eng., 2021, 29(6): 1311-1320. (in Chinese). doi: 10.37188/OPE.2020.0700http://dx.doi.org/10.37188/OPE.2020.0700
孙建康, 王帅, 曹斯萌, 等. 基于模糊PID控制的智能循迹小车设计[J]. 现代制造技术与装备, 2021, 57(12): 202-205. doi: 10.3969/j.issn.1673-5587.2021.12.065http://dx.doi.org/10.3969/j.issn.1673-5587.2021.12.065
SUN J K, WANG SH, CAO S M, et al. Design of intelligent tracking vehicle based on fuzzy PID control[J]. Modern Manufacturing Technology and Equipment, 2021, 57(12): 202-205. (in Chinese). doi: 10.3969/j.issn.1673-5587.2021.12.065http://dx.doi.org/10.3969/j.issn.1673-5587.2021.12.065
王跃. 基于STM32的自平衡小车PID控制算法研究[J]. 电脑与电信, 2022(9): 63-68. doi: 10.3969/j.issn.1008-6609.2022.9.gddnydx202209015http://dx.doi.org/10.3969/j.issn.1008-6609.2022.9.gddnydx202209015
WANG Y. Research on PID control algorithm for self-balancing vehicle based on STM32[J]. Computer & Telecommunication, 2022(9): 63-68.(in Chinese). doi: 10.3969/j.issn.1008-6609.2022.9.gddnydx202209015http://dx.doi.org/10.3969/j.issn.1008-6609.2022.9.gddnydx202209015
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构