1.广东海洋大学 深圳研究院,广东 深圳 518120
2.广东海洋大学 广东省南海海洋牧场智能装备重点实验室,广东 湛江 524088
3.广东海洋大学 机械工程学院,广东 湛江 524088
4.广东海洋大学 智慧海洋传感网及其装备工程技术研究中心,广东 湛江 524088
[ "高佳乐(1998-),女,山东济宁人,硕士研究生,2020年于山东财经大学获得学士学位,主要从事光学传感与检测技术的研究。E-mail: gaojiale24@163.com" ]
[ "杨玉强(1977-),男,山东德州人,博士,教授,博士生导师,2002年于东北师范大学物理学专业获学士学位,2004年和2009年于哈尔滨工业大学光学和物理电子学专业分别获得硕士和博士学位,主要从事光学传感与检测技术研究。E-mail: yuqiangy110@sina.com" ]
[ "牟小光(1978-),男,山东德州人,硕士,讲师,2001年于广东海洋大学获学士学位,2009年于武汉理工大学获硕士学位,主要从事光纤传感与检测技术得研究。E-mail:xd_gdou@sina.com" ]
扫 描 看 全 文
高佳乐,杨玉强,牟小光等.基于增强型游标效应的光纤温度传感器[J].光学精密工程,2023,31(24):3531-3539.
GAO Jiale,YANG Yuqiang,MU Xiaoguang,et al.Fiber-optic temperature sensor based on enhanced Vernier effect[J].Optics and Precision Engineering,2023,31(24):3531-3539.
高佳乐,杨玉强,牟小光等.基于增强型游标效应的光纤温度传感器[J].光学精密工程,2023,31(24):3531-3539. DOI: 10.37188/OPE.20233124.3531.
GAO Jiale,YANG Yuqiang,MU Xiaoguang,et al.Fiber-optic temperature sensor based on enhanced Vernier effect[J].Optics and Precision Engineering,2023,31(24):3531-3539. DOI: 10.37188/OPE.20233124.3531.
提出了一种基于增强型游标效应增敏的高灵敏度光纤温度传感器,该传感器由对温度均敏感的法布里-珀罗干涉计(Fabry-Perot Interferometer,FPI)与萨格奈克干涉计(Sagnac Interferometer,SI)级联构成。FPI为聚二甲基硅氧烷(PDMS)填充空芯光纤(HCF)形成的PDMS腔,SI由单模光纤环内熔接一段熊猫光纤而成。FPI和SI具有相反的温度响应,随温度的升高,FPI的干涉谱逐渐红移,而SI的干涉谱逐渐蓝移,从而产生增强型游标效应,其温度灵敏度远大于单个FPI或单个SI,且放大倍率明显高于普通游标效应。实验结果表明:36~39 ℃温度范围内,该传感器温度灵敏度达到了,-,57.85 nm/℃,分别为单个FPI和SI灵敏度的44.8倍和30.8倍,分别为普通游标效应放大倍率的2.56倍和1.66倍。该传感器具有灵敏度高、稳定性能好、制备成本低等优点,具有非常好的应用前景。
A high-sensitivity fiber temperature sensor based on enhanced Vernier effect is proposed. The proposed sensor consists of a cascaded Fabry-Perot interferometer (FPI) and Sagnac interferometer (SI). The FPI was a PDMS cavity formed by filling polydimethylsiloxane (PDMS) into hollow-core fiber (HCF), and SI was formed by fusing a section of Panda fiber inside a single-mode fiber ring. FPI and SI have opposite temperature responses. With increasing temperature, the interference spectrum of FPI will red-shift, whereas that of SI will blue-shift. Therefore, when FPI and SI are cascaded, an enhanced Vernier effect will be generated, with a temperature sensitivity much greater than FPI or SI alone. The magnification of the enhanced Vernier effect is significantly larger than that of the ordinary Vernier effect. Experimental results show that the sensitivity of the sensor is -57.85 nm/℃ in the temperature range of 36–39 ℃, which is 44.8 and 30.8 times that of FPI and SI alone, respectively. The sensitivity magnifications are 2.56 and 1.66 times those of ordinary Vernier effect, respectively. The sensor has the advantages of high sensitivity, good stability, low preparation cost, and very good application prospects.
光纤传感器法布里-珀罗干涉计萨格奈克干涉计增强型游标效应聚二甲基硅氧烷
optical fiber sensorFabry-Perot Interferometer(FPI)Sagnac Interferometer(SI)enhanced vernier effectPolydimethylsiloxane
汪柯红, 余洋, 王洋, 等. 空芯光纤的双机理温度传感特性比较[J]. 光子学报, 2022, 51(11): 1106001.
WANG K H, YU Y, WANG Y, et al. Comparative study on temperature sensing characteristics of dual mechanisms in hollow core fiber[J]. Acta Photonica Sinica, 2022, 51(11): 1106001.(in Chinese)
蔡礼邹, 覃亚丽, 蔡小磊, 等. 基于游标原理的法布里-珀罗温度传感器的增敏方法[J]. 激光与光电子学进展, 2021, 58(11): 1106004. doi: 10.3788/LOP202158.1106004http://dx.doi.org/10.3788/LOP202158.1106004
CAI L Z, QIN Y L, CAI X L, et al. Sensitization method of Fabry-Perot temperature sensor based on vernier principle[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1106004.(in Chinese). doi: 10.3788/LOP202158.1106004http://dx.doi.org/10.3788/LOP202158.1106004
郭海若, 刘琨, 江俊峰, 等. 基于可调谐激光器的光纤高低温力热复合多参量传感系统[J]. 中国激光, 2021, 48(19): 1906003. doi: 10.3788/CJL202148.1906003http://dx.doi.org/10.3788/CJL202148.1906003
GUO H R, LIU K, JIANG J F, et al. Optical Fiber high and low temperature mechanical and thermal multi-parameter sensing system based on tunable laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1906003.(in Chinese). doi: 10.3788/CJL202148.1906003http://dx.doi.org/10.3788/CJL202148.1906003
苏杭, 赵纯龙, 张钊溶, 等. 基于三种不同微腔状态的F-P干涉型高灵敏度温度传感器[J]. 光子学报, 2021, 50(9): 0906007. doi: 10.3788/gzxb20215009.0906007http://dx.doi.org/10.3788/gzxb20215009.0906007
SU H, ZHAO C L, ZHANG Z R, et al. High sensitivity fabry-Pérot interferometric temperature sensor based on three different microcavity states[J]. Acta Photonica Sinica, 2021, 50(9): 0906007.(in Chinese). doi: 10.3788/gzxb20215009.0906007http://dx.doi.org/10.3788/gzxb20215009.0906007
杨泓铭, 饶春芳, 吴锴, 等. 基于光纤布拉格光栅的压力蒸汽灭菌器气体质量监测[J]. 光学 精密工程, 2022, 30(3): 264-273. doi: 10.37188/OPE.2021.0284http://dx.doi.org/10.37188/OPE.2021.0284
YANG H M, RAO C F, WU K, et al. Gas quality monitoring for sterilizer based on fiber Bragg grating[J]. Opt. Precision Eng., 2022, 30(3): 264-273.(in Chinese). doi: 10.37188/OPE.2021.0284http://dx.doi.org/10.37188/OPE.2021.0284
吴根柱, 林春婷, 卢俊城, 等. 七芯光子晶体光纤温度传感器[J]. 光学 精密工程, 2021, 29(5): 951-957. doi: 10.37188/OPE.2020.0662http://dx.doi.org/10.37188/OPE.2020.0662
WU G Z, LIN C T, LU J C, et al. Seven-core photonic crystal fiber temperature sensor[J]. Opt. Precision Eng., 2021, 29(5): 951-957. (in Chinese). doi: 10.37188/OPE.2020.0662http://dx.doi.org/10.37188/OPE.2020.0662
薛兆康, 国旗, 刘善仁, 等. 油气井下光纤光栅温度压力传感器[J]. 中国光学, 2021, 14(5): 1224-1230.
XUE Z K, GUO Q, LIU S R, et al. Fiber Bragg grating temperature and pressure sensor for oil and gas well[J]. Chinese Journal of Optics, 2021, 14(5): 1224-1230.(in Chinese)
XIE L Q, SUN B, CHEN M M, et al. Sensitivity enhanced temperature sensor with serial tapered two-mode fibers based on the Vernier effect[J]. Optics Express, 2020, 28(22): 32447. doi: 10.1364/oe.403865http://dx.doi.org/10.1364/oe.403865
ZHANG J, LIAO H, LU P, et al. Ultrasensitive temperature sensor with cascaded fiber optic Fabry-Perot interferometers based on vernier effect[J]. IEEE Photonics Journal, 2018, 10(5): 1-11. doi: 10.1109/jphot.2018.2865449http://dx.doi.org/10.1109/jphot.2018.2865449
GAO H, HU H, ZHAO Y, et al. Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures[J]. Sensors and Actuators A: Physical, 2018, 284: 22-27. doi: 10.1016/j.sna.2018.10.011http://dx.doi.org/10.1016/j.sna.2018.10.011
LI J W, ZHANG M, WAN M G, et al. Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs[J]. Optics Express, 2020, 28(3): 4145-4155. doi: 10.1364/oe.384815http://dx.doi.org/10.1364/oe.384815
ROBALINHO P M R, GOMES A D, FRAZÃO O. High enhancement strain sensor based on vernier effect using 2-fiber loop mirrors[J]. IEEE Photonics Technology Letters, 2020, 32(18): 1139-1142. doi: 10.1109/lpt.2020.3014695http://dx.doi.org/10.1109/lpt.2020.3014695
郭云, 陈圣林, 王平, 等. 基于游标效应的温度不敏感光纤拉力传感器[J]. 光子学报, 2022, 51(12): 1206003.
GUO Y, CHEN S L, WANG P, et al. Temperature-insensitive optical fiber tension sensor based on vernier effect[J]. Acta Photonica Sinica, 2022, 51(12): 1206003.(in Chinese)
PAN R, YANG W L, LI L J, et al. A high-sensitive fiber-optic fabry-perot sensor with parallel polymer-air cavities based on vernier effect for simultaneous measurement of pressure and temperature[J]. IEEE Sensors Journal, 2021, 21(19): 21577-21585. doi: 10.1109/jsen.2021.3101863http://dx.doi.org/10.1109/jsen.2021.3101863
SU H, GAO L, ZHANG Z, et al. Optical fiber temperature sensor with Vernier effect formed by Mach-Zehnder interferometer cascaded Sagnac interferometer based on Hollow-core photonic crystal fiber[J]. Photonics and Nanostructures-Fundamentals and Applications, 2022, 52: 101085. doi: 10.1016/j.photonics.2022.101085http://dx.doi.org/10.1016/j.photonics.2022.101085
LANG C P, LIU Y, LIAO Y Y, et al. Ultra-sensitive fiber-optic temperature sensor consisting of cascaded liquid-air cavities based on vernier effect[J]. IEEE Sensors Journal, 2020, 20(10): 5286-5291. doi: 10.1109/jsen.2020.2970431http://dx.doi.org/10.1109/jsen.2020.2970431
LUO W, CAO Z, ZHANG G, et al. A highly sensitive optical fiber temperature sensor based on the enhanced vernier effect[J]. Optical Fiber Technology, 2021, 67: 102702. doi: 10.1016/j.yofte.2021.102702http://dx.doi.org/10.1016/j.yofte.2021.102702
ZHU X P, JIANG C, CHEN H L, et al. Highly sensitive gas pressure sensor based on the enhanced Vernier effect through a cascaded Fabry-Perot and Mach-Zehnder interferometer[J]. Optics Express, 2022, 30(19): 34956. doi: 10.1364/oe.463396http://dx.doi.org/10.1364/oe.463396
MU X G, GAO J L, YANG Y Q, et al. Parallel polydimethylsiloxane-cavity fabry-perot interferometric temperature sensor based on enhanced vernier effect[J]. IEEE Sensors Journal, 2022, 22(2): 1333-1337. doi: 10.1109/jsen.2021.3133457http://dx.doi.org/10.1109/jsen.2021.3133457
GAO H, ZHANG Y X, ZHANG W G, et al. High sensitivity optical fiber temperature sensor based on PDMS-filled with extended measuring range[J]. Optik, 2021, 248: 168181. doi: 10.1016/j.ijleo.2021.168181http://dx.doi.org/10.1016/j.ijleo.2021.168181
CHEN M, ZHAO Y, XIA F, et al. High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber[J]. Sensors and Actuators A: Physical, 2018, 275: 60-66. doi: 10.1016/j.sna.2018.03.044http://dx.doi.org/10.1016/j.sna.2018.03.044
YANG Y Q, WANG Y G, ZHAO Y X, et al. Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity[J]. Optics Express, 2017, 25(26): 33290. doi: 10.1364/oe.25.033290http://dx.doi.org/10.1364/oe.25.033290
ZHANG W, WU X, ZUO C, et al. Highly sensitive temperature and strain sensor based on fiber Sagnac interferometer with Vernier effect[J]. Optics Communications, 2022, 506: 127543. doi: 10.1016/j.optcom.2021.127543http://dx.doi.org/10.1016/j.optcom.2021.127543
周豫, 周雪芳, 樊冰, 等. 基于Vernier效应的光纤温度传感特性研究[J]. 光电子·激光, 2020, 31(4): 345-350.
ZHOU Y, ZHOU X F, FAN B, et al. Research of fiber temperature sensing characteristics based on vernier effect[J]. Journal of Optoelectronics·Laser, 2020, 31(4): 345-350.(in Chinese)
DAI M L, CHEN Z M, ZHAO Y F, et al. Fiber optic temperature sensor with online controllable sensitivity based on vernier effect[J]. IEEE Sensors Journal, 2021, 21(19): 21555-21563. doi: 10.1109/jsen.2021.3101572http://dx.doi.org/10.1109/jsen.2021.3101572
PAN R, LIU M, BIAN Y, et al. High-sensitive temperature sensor with parallel PDMS-filled FPIs based on dual Vernier effect[J]. Optics Communications, 2022, 518: 128284. doi: 10.1016/j.optcom.2022.128284http://dx.doi.org/10.1016/j.optcom.2022.128284
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构