浙江师范大学 精密机械与智能结构研究所,浙江 金华 321004
[ "张忠华(1980-),吉林松原人,男,博士、教授、硕士生导师,2009年于大连理工大学获得博士学位。主要研究方向为能量收集技术、压电传感器与驱动器技术、智能结构与系统。E-mail:zhangzhh@zjnu.edu.cn" ]
[ "阚君武(1965-),男,吉林榆树人,博士,教授,博士生导师,1991年、2000年于吉林工业大学分别获得学士学位和硕士学位,2003年于吉林大学获得博士学位,2005年中国科学院长春光机所博士后出站,主要从事压电驱动器、能量回收与自供电技术、精密机械与微小机械等方面研究。E-mail:jutkjw@163.com" ]
扫 描 看 全 文
张忠华,李哲,孟凡许等.可变形式翼型钝体的风致振压电俘能器[J].光学精密工程,2023,31(24):3570-3579.
ZHANG Zhonghua,LI Zhe,MENG Fanxu,et al.Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body[J].Optics and Precision Engineering,2023,31(24):3570-3579.
张忠华,李哲,孟凡许等.可变形式翼型钝体的风致振压电俘能器[J].光学精密工程,2023,31(24):3570-3579. DOI: 10.37188/OPE.20233124.3570.
ZHANG Zhonghua,LI Zhe,MENG Fanxu,et al.Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body[J].Optics and Precision Engineering,2023,31(24):3570-3579. DOI: 10.37188/OPE.20233124.3570.
针对现有风致振压电俘能器工作风速范围窄、高风速下振幅过大等问题,提出一种可变形式翼型钝体的风致振压电俘能器,主要由可变形式翼型钝体、悬臂梁以及压电组合梁构成,钝体的弹性翼受风力影响产生形变,从而实现系统振动特性的自我调节,以期提高俘能器的环境适应性。建立了俘能器的COMSOL有限元模型,通过仿真与试验分析了风速对其钝体形状及振动特性的影响,并获得了迎风角和弹性翼厚对俘能器输出性能的影响规律。结果表明:选取迎风角120°和弹性翼厚0.15 mm时俘能器的工作风速范围达到21 m/s,且当风速小于8 m/s时,弹性翼变形较小,系统以驰振为主,输出电压随风速增加而增大;当风速在8~17 m/s时,弹性翼形变量进一步增大,系统由驰振逐渐向涡振转变,输出电压变化较小;当风速在17~25 m/s时,钝体因弹性翼变形过大呈弯弧状,系统以涡振为主,其振幅被有效控制,输出电压随风速增加而减小;存在匹配电阻为250 kΩ时俘能器所产生的最大输出功率为3.78 mW。因此,该风致振压电俘能器在满足结构可靠、起振风速低及风速范围宽条件下同时可输出较大的电能。
A novel wind-induced-vibration piezoelectric-energy harvester with a deformable airfoil-shaped bluff body is proposed in this study to solve the problems of narrow wind speed bandwidths and excessive amplitudes at high wind speeds. The harvester mainly consists of a deformable bluff body, cantilever beam, and piezoelectric vibrator. The elastic wing of the bluff body deforms at different wind speeds, thus achieving the self-adjustment of the vibration characteristics and improving the environmental adaptability of the harvester. A COMSOL finite element model of the energy harvester is established, and the effect of wind speed on the shape and vibration characteristics of the bluff body is analyzed via simulations and experiments. In addition, the effects of windward angle ,θ, and elastic wing thickness ,e, on the output performance of the energy harvester are determined. The results show that the wind speed bandwidth of the harvester ranges from 4 m/s to 25 m/s at a windward angle ,θ, of 120° and an elastic wing thickness ,e, of 0.15 mm. Furthermore, the deformation of the elastic wing becomes small when the wind speed is lower than 8 m/s. When the wind speed ranges from 8 m/s to 17 m/s, the harvester experiences a transformation from galloping to vortex-induced vibration, resulting in a decrease in the output voltage. When the wind speed ranges between 17 m/s and 25 m/s, the bluff body has an arc shape because of the excessive deformation of the elastic wing. The harvester is dominated by vortex-induced vibration, and thus, its amplitude can be effectively suppressed. The output voltage decreases with increasing wind speed. Additionally, the test results show that the harvester can yield a maximum output power of 3.78 mW at a matching impedance of 250 kΩ. Both the theoretical analysis and experimental results indicate that the proposed harvester can satisfy the requirements of high reliability, low cut-in wind speed, and broad wind speed bandwidth, as well as generate considerable electric power.
压电俘能器风致振动可变形钝体驰振涡激振动
piezoelectric energy harvesterwind-induced vibrationdeformable blunt bodygallopingvortex-induced vibration
SHARMA S, KIRAN R, AZAD P, et al. A review of piezoelectric energy harvesting tiles: available designs and future perspective[J]. Energy Conversion and Management, 2022, 254: 115272. doi: 10.1016/j.enconman.2022.115272http://dx.doi.org/10.1016/j.enconman.2022.115272
MUSCAT A, BHATTACHARYA S, ZHU Y. Electromagnetic vibrational energy harvesters: a review[J]. Sensors, 2022, 22(15): 5555. doi: 10.3390/s22155555http://dx.doi.org/10.3390/s22155555
LIU H, FU H, SUN L, et al. Hybrid energy harvesting technology: from materials, structural design, system integration to applications[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110473. doi: 10.1016/j.rser.2020.110473http://dx.doi.org/10.1016/j.rser.2020.110473
ZHANG C G, LIU Y B, ZHANG B F, et al. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system[J]. ACS Energy Letters, 2021: 1490-1499. doi: 10.1021/acsenergylett.1c00368http://dx.doi.org/10.1021/acsenergylett.1c00368
阚君武, 富佳伟, 王淑云, 等. 涡激振动式微型流体俘能器的研究现状与展望[J]. 光学 精密工程, 2017, 25(6): 1502-1512. doi: 10.3788/ope.20172506.1502http://dx.doi.org/10.3788/ope.20172506.1502
KAN J W, FU J W, WANG S Y, et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Opt. Precision Eng., 2017, 25(6): 1502-1512.(in Chinese). doi: 10.3788/ope.20172506.1502http://dx.doi.org/10.3788/ope.20172506.1502
ZHANG L, ZHANG F, QIN Z, et al. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring[J]. Energy, 2022, 238: 121770. doi: 10.1016/j.energy.2021.121770http://dx.doi.org/10.1016/j.energy.2021.121770
王朝辉, 贾小东, 王帅, 等. 基于应用环境的路用压电俘能单元尺寸优化与性能评价[J]. 中国公路学报, 2022, 35(7): 100-112. doi: 10.3969/j.issn.1001-7372.2022.07.008http://dx.doi.org/10.3969/j.issn.1001-7372.2022.07.008
WANG C H, JIA X D, WANG S, et al. Size optimization and performance evaluation of road piezoelectric energy harvesting unit based on application environment[J]. China Journal of Highway and Transport, 2022, 35(7): 100-112.(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.07.008http://dx.doi.org/10.3969/j.issn.1001-7372.2022.07.008
CHEN Y, YANG Z C, ZHOU S X. Wide bandwidth wind-induced vibration energy harvester with an angle section head[J]. International Journal of Applied Mechanics, 2022, 14(3): 2250021. doi: 10.1142/s1758825122500211http://dx.doi.org/10.1142/s1758825122500211
ZHANG Z, CHAI J, WU Y, et al. A rotational energy harvester utilizing an asymmetrically deformed piezoelectric transducer subjected only to unidirectional compressive stress[J]. Energy Reports, 2023, 9: 657-668. doi: 10.1016/j.egyr.2022.12.027http://dx.doi.org/10.1016/j.egyr.2022.12.027
阚君武, 王凯, 孟凡许, 等. 换向激励式压电振动俘能器[J]. 光学 精密工程, 2023, 31(3): 371-379. doi: 10.37188/OPE.20233103.0371http://dx.doi.org/10.37188/OPE.20233103.0371
KAN J W, WANG K, MENG F X, et al. Piezoelectric vibration harvester with excitation direction conversion[J]. Opt. Precision Eng., 2023, 31(3): 371-379.(in Chinese). doi: 10.37188/OPE.20233103.0371http://dx.doi.org/10.37188/OPE.20233103.0371
王水田. 卡门漩涡引起的海洋建筑物的振动及其防止(上)[J]. 水道港口, 1983(4): 47-54.
WANG S T. Vibration of marine structures caused by the Karman vortex and its prevention (Part 1)[J]. Journal of Waterway and Harbor, 1983(4): 47-54. (in Chinese)
王淑云, 严梦加, 阚君武, 等. 间接激励式压电风力俘能器[J]. 光学 精密工程, 2019, 27(5): 1121-1127. doi: 10.3788/ope.20192705.1121http://dx.doi.org/10.3788/ope.20192705.1121
WANG S Y, YAN M J, KAN J W, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Opt. Precision Eng., 2019, 27(5): 1121-1127.(in Chinese). doi: 10.3788/ope.20192705.1121http://dx.doi.org/10.3788/ope.20192705.1121
LIU J J, CHEN Y J, XIA W, et al. An innovative V-shaped piezoelectric energy harvester for wind energy based on the fully fluid-solid-electric coupling[J]. Journal of Renewable and Sustainable Energy, 2021, 13(6): 063304. doi: 10.1063/5.0059870http://dx.doi.org/10.1063/5.0059870
侯成伟, 单小彪, 宋汝君, 等. 风向自适应型涡激振动压电俘能器的试验研究[J]. 机械工程学报, 2022, 58(20): 120-127. doi: 10.3901/jme.2022.20.120http://dx.doi.org/10.3901/jme.2022.20.120
HOU C W, SHAN X B, SONG R J, et al. Experimental study of orientation adaptive piezoelectric energy harvester based on vortex induced vibration[J]. Journal of Mechanical Engineering, 2022, 58(20): 120-127.(in Chinese). doi: 10.3901/jme.2022.20.120http://dx.doi.org/10.3901/jme.2022.20.120
HU G, WANG J, TANG L. A comb-like beam based piezoelectric system for galloping energy harvesting[J]. Mechanical Systems and Signal Processing, 2021, 150: 107301. doi: 10.1016/j.ymssp.2020.107301http://dx.doi.org/10.1016/j.ymssp.2020.107301
LIAO W, WEN Y, KAN J, et al. A joint-nested structure piezoelectric energy harvester for high-performance wind-induced vibration energy harvesting[J]. International Journal of Mechanical Sciences, 2022, 227: 107443. doi: 10.1016/j.ijmecsci.2022.107443http://dx.doi.org/10.1016/j.ijmecsci.2022.107443
KAN J, WANG J, MENG F, et al. A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle[J]. Energy, 2023, 262: 125429. doi: 10.1016/j.energy.2022.125429http://dx.doi.org/10.1016/j.energy.2022.125429
WANG J, GU S, ZHANG C, et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping[J]. Energy Conversion and Management, 2020, 213: 112835. doi: 10.1016/j.enconman.2020.112835http://dx.doi.org/10.1016/j.enconman.2020.112835
WANG J, SUN S, TANG L, et al. On the use of metasurface for Vortex-Induced vibration suppression or energy harvesting[J]. Energy Conversion and Management, 2021, 235: 113991. doi: 10.1016/j.enconman.2021.113991http://dx.doi.org/10.1016/j.enconman.2021.113991
ZHOU Z, QIN W, ZHU P, et al. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings[J]. Energy, 2018, 153: 400-412. doi: 10.1016/j.energy.2018.04.035http://dx.doi.org/10.1016/j.energy.2018.04.035
SUN W, SEOK J. A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration[J]. Energy Conversion and Management, 2020, 205: 112472. doi: 10.1016/j.enconman.2020.112472http://dx.doi.org/10.1016/j.enconman.2020.112472
ZHANG X F, LIN X J, YANG C H, et al. Effects of radial stress on piezoelectric ceramic tubes and transducers[J]. The Journal of the Acoustical Society of America, 2022, 151(1): 434-442. doi: 10.1121/10.0009319http://dx.doi.org/10.1121/10.0009319
LIU F R, ZOU H X, ZHANG W M, et al. Y-type three-blade bluff body for wind energy harvesting[J]. Applied Physics Letters, 2018, 112(23): 233903. doi: 10.1063/1.5029415http://dx.doi.org/10.1063/1.5029415
杜小振, P.A.MBANGO-NGOMA, 常恒,等. 流致涡激振动压电发电风能采集技术模拟研究[J]. 振动与冲击, 2022, 41(23): 168-174.
DU X Z, P. A. M N, CHANG H, et al. Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation[J]. Journal of Vibration and Shock, 2022, 41(23): 168-174. (in Chinese)
LIAO W L, HUANG Z J, SUN H, et al. Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting[J]. Energy, 2023, 281: 128264. doi: 10.1016/j.energy.2023.128264http://dx.doi.org/10.1016/j.energy.2023.128264
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构