山东科技大学 电气与自动化工程学院,山东 青岛 266590
[ "李智斌(1965-),男,四川巴中人,博士,教授,博士生导师,2003年于清华大学获博士学位,主要从事复杂系统动力学建模与控制技术等方面的研究。E-mail: zhibin.li@sdust.edu.cn" ]
[ "张建强(1992-),男,山东青州人,博士,讲师,2020年于中国科学院大学长春光学精密机械与物理研究所获得博士学位,主要从事激光通信伺服系统、目标跟踪、鲁棒控制、模型辨识等方面的研究。E-mail: zhangjg7170@163.com" ]
扫 描 看 全 文
李智斌,李亮,张建强等.双轴音圈电机快速反射镜的系统建模与滑模控制[J].光学精密工程,2023,31(24):3580-3594.
LI Zhibin,LI Liang,ZHANG Jianqiang,et al.System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror[J].Optics and Precision Engineering,2023,31(24):3580-3594.
李智斌,李亮,张建强等.双轴音圈电机快速反射镜的系统建模与滑模控制[J].光学精密工程,2023,31(24):3580-3594. DOI: 10.37188/OPE.20233124.3580.
LI Zhibin,LI Liang,ZHANG Jianqiang,et al.System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror[J].Optics and Precision Engineering,2023,31(24):3580-3594. DOI: 10.37188/OPE.20233124.3580.
快速反射镜(Fast Steering Mirror,FSM)是高精密光学系统中的关键仪器,基于音圈电机(Voice Coil Actuator,VCA)驱动的柔性支撑FSM存在复杂耦合特性,导致系统模型复杂并严重影响系统的控制性能,对于该问题,本文提出了一种基于系统辨识与模型降阶的双轴积分增广滑模控制方法。首先,采用基于脉冲响应的Hankel矩阵系统辨识方法建立VCA-FSM的精确耦合模型;随后,基于平衡实现与平衡截断,在保证模型精度的前提下对所建立的高阶模型进行降阶;其次,基于降阶模型,采用现代控制理论方法设计积分增广滑模控制器,通过设计状态观测器构造滑模切换函数与控制律,并在控制设计中改进符号函数以消除滑模抖振;最后,基于VCA-FSM伺服控制系统实验平台,开展频域与时域性能测试实验。实验结果表明:本文所提控制方法相较于单轴滑模、PID控制方法,系统的闭环跟踪带宽分别提高了约50.3%,251.3%,扰动抑制带宽分别提高了约39.9%,451.9%,阶跃响应调节时间分别缩短了约29.7%,97.7%,螺旋线跟踪精度分别提高了约48.5%,97.8%,且实现了对存在强耦合特性VCA-FSM的解耦控制。本文所提控制方法充分提高了VCA-FSM的控制性能。
A fast-steering mirror (FSM) is a key instrument in high-precision optical systems. However, the flexible-support FSM driven by a voice coil actuator (VCA) possesses complex coupling characteristics; this leads to a complex system model and severely impacts the control performance. To address this issue, this study proposes a dual-axis integral augmented sliding-mode control method, based on system identification and model reduction. Firstly, an accurate coupled VCA-FSM model is established using the Hankel-matrix system-identification method based on pulse response. Subsequently, based on balanced realization and truncation, the high-order model is reduced, while ensuring model accuracy. Next, an integral augmented sliding-mode controller is designed, adopting a modern control-theory method and using the reduced-order model. A state observer is constructed to create the sliding-mode switching function and control law, and the sign function is improved in the control design to eliminate sliding-mode chattering. Finally, frequency-domain and time-domain performance-testing experiments are conducted on the VCA-FSM servo control-system experimental platform. The experimental results demonstrate that the proposed control method significantly improves the control performance of the VCA-FSM servo system, compared to the single-axis sliding-mode and PID control methods. The closed-loop tracking bandwidth is increased by approximately 50.3% and 251.3%, respectively, the disturbance-suppression bandwidth is increased by approximately 39.9% and 451.9%, respectively, the settling time of the step response is reduced by approximately 29.7% and 97.7%, respectively, and the tracking accuracy of the spiral line is improved by approximately 48.5% and 97.8%, respectively. Moreover, the proposed control method controls the decoupling of the VCA-FSM with strong coupling characteristics. The control method proposed in this study greatly improves the control performance of the VCA-FSM.
快速反射镜音圈电机系统辨识模型降阶滑模控制
Fast Steering Mirror(FSM)Voice Coil Actuator(VCA)system identificationmodel reductionsliding mode control
倪迎雪, 伞晓刚, 高世杰, 等. 激光通信APT系统中快速反射镜研究[J]. 激光与红外, 2018, 48(2): 140-147. doi: 10.3969/j.issn.1001-5078.2018.02.002http://dx.doi.org/10.3969/j.issn.1001-5078.2018.02.002
NI Y X, SAN X G, GAO S J, et al. Research of fast steering mirror in laser communication APT system[J]. Laser & Infrared, 2018, 48(2)140-147(in Chinese). doi: 10.3969/j.issn.1001-5078.2018.02.002http://dx.doi.org/10.3969/j.issn.1001-5078.2018.02.002
谭淞年, 王福超, 许永森, 等. 航空光电平台两轴快速反射镜结构设计[J]. 光学 精密工程, 2022, 30(11): 1344-1352. doi: 10.37188/OPE.20213000.0757http://dx.doi.org/10.37188/OPE.20213000.0757
TAN S N, WANG F C, XU Y S, et al. Structure design of two-axis fast steering mirror for aviation optoelectronic platform[J]. Opt. Precision Eng., 2022, 30(11): 1344-1352.(in Chinese). doi: 10.37188/OPE.20213000.0757http://dx.doi.org/10.37188/OPE.20213000.0757
张兴亮, 王威, 吴佳彬. 激光通信系统中快速反射镜控制技术研究[J]. 半导体光电, 2021, 42(2): 289-294, 300.
ZHANG X L, WANG W, WU J B. Research on fast steering mirror control technology of laser communication system[J]. Semiconductor Optoelectronics, 2021, 42(2): 289-294, 300.(in Chinese)
蔡玉生, 朱军, 石磊, 等. 大口径快速反射镜的模糊自适应PID控制[J]. 红外技术, 2021, 43(6): 523-531.
CAI Y S, ZHU J, SHI L, et al. Fuzzy adaptive PID control of large aperture fast steering mirror[J]. Infrared Technology, 2021, 43(6): 523-531.(in Chinese)
丁科, 黄永梅, 马佳光, 等. 抑制光束抖动的快速反射镜复合控制[J]. 光学 精密工程, 2011, 19(9): 1991-1998. doi: 10.3788/ope.20111909.1991http://dx.doi.org/10.3788/ope.20111909.1991
DING K, HUANG Y M, MA J G, et al. Composite control of fast-steering-mirror for beam jitter[J]. Opt. Precision Eng., 2011, 19(9): 1991-1998.(in Chinese). doi: 10.3788/ope.20111909.1991http://dx.doi.org/10.3788/ope.20111909.1991
ZHU W, RUI X T. Adaptive control of a piezo-actuated steering mirror to restrain laser-beam jitter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7873-7881. doi: 10.1109/tie.2018.2885731http://dx.doi.org/10.1109/tie.2018.2885731
冯建鑫, 王雅雷, 王强, 等. 改进蜻蜓算法的快速反射镜自抗扰控制[J]. 光学 精密工程, 2021, 29(6): 1301-1310. doi: 10.37188/OPE.20212906.1301http://dx.doi.org/10.37188/OPE.20212906.1301
FENG J X, WANG Y L, WANG Q, et al. Active disturbance rejection controller of fast steering mirror based on improved dragonfly algorithm[J]. Opt. Precision Eng., 2021, 29(6): 1301-1310. (in Chinese). doi: 10.37188/OPE.20212906.1301http://dx.doi.org/10.37188/OPE.20212906.1301
CSENCSICS E, SCHITTER G. System design and control of a resonant fast steering mirror for lissajous-based scanning[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 1963-1972. doi: 10.1109/tmech.2017.2722578http://dx.doi.org/10.1109/tmech.2017.2722578
苏秀琴, 王瑞, 吕涛, 等. 一种降低两轴快速反射镜中X轴和Y轴耦合的控制方法: CN110361827B[P]. 2020-05-12.
SU A Q, WANG R, LV T, et al. Control method for reducing coupling of X axis and Y axis in two-axis rapid reflector: CN110361827B[P]. 2020-05-12.(in Chinese).
王瑞, 苏秀琴, 乔永明, 等. 基于双前馈+双神经网络自适应快速反射镜的解耦控制[J]. 红外与激光工程, 2021, 50(11): 231-237.
WANG R, SU X Q, QIAO Y M, et al. Decoupling control of fast steering mirror based on dual feedforward + dual neural network adaptive [J]. Infrared and Laser Engineering, 2021, 50(11): 231-237.(in Chinese)
方连伟, 史守峡. 快速反射镜控制回路设计与仿真[J]. 激光与红外, 2020, 50(10): 1233-1240. doi: 10.3969/j.issn.1001-5078.2020.10.014http://dx.doi.org/10.3969/j.issn.1001-5078.2020.10.014
FANG L W, SHI S X. Closed loop design and simulation of fast steering mirror[J]. Laser & Infrared, 2020, 50(10): 1233-1240. (in Chinese). doi: 10.3969/j.issn.1001-5078.2020.10.014http://dx.doi.org/10.3969/j.issn.1001-5078.2020.10.014
方连伟, 史守峡, 蒋志勇. 柔性支撑快速反射镜伺服机构的参数辨识[J]. 红外与激光工程, 2021, 50(5): 165-175.
FANG L W, SHI S X, JIANG Z Y. Servo mechanism parameter identification of fast steering mirror based on flexible supports[J]. Infrared and Laser Engineering, 2021, 50(5):157-167.(in Chinese)
蔡玉生. 大口径偏摆镜的控制技术研究[D]. 北京: 中国科学院大学, 2021.
CAI Y S. Research on Control Technology of Large-Aperture Deflection Mirror[D] Beijing: University of Chinese Academy of Sciences, 2021. (in Chinese)
闻成, 谭敏哲, 卢洁莹, 等. 具有柔性特性的机电伺服系统辨识[J]. 控制理论与应用, 2023, 40(4): 663-672. doi: 10.7641/CTA.2021.10452http://dx.doi.org/10.7641/CTA.2021.10452
WEN C, TAN M Z, LU J Y, et al. Identification of electromechanical servo systems with flexible characteristics[J]. Control Theory & Applications, 2023, 40(4): 663-672.(in Chinese). doi: 10.7641/CTA.2021.10452http://dx.doi.org/10.7641/CTA.2021.10452
LI Z B, HUANG H, ZHANG J Q, et al. Fast steering mirror model identification based on impulse response hankel matrix[C]. 2022 China Automation Congress (CAC).25-27, 2022, Xiamen, China. IEEE, 2023: 611-616. doi: 10.1109/cac57257.2022.10055556http://dx.doi.org/10.1109/cac57257.2022.10055556
郑大钟. 线性系统理论[M]. 第2版. 北京: 清华大学出版社, 2002.
ZHENG D Z. Linear System Theory[M]. Beijing: Tsinghua University Press, 2002.(in Chinese)
HAN X, LI X M, ZHOU K M. Some insights on data-based frequency-weighted model reduction[C]. 40th Chinese Control Conference (CCC).26-28, 2021, Shanghai, China. IEEE, 2021: 2039-2044. doi: 10.23919/ccc52363.2021.9549394http://dx.doi.org/10.23919/ccc52363.2021.9549394
陈薇, 李鑫. 刚柔耦合大型带式输送机的平衡模型降阶[J]. 煤炭学报, 2014, 39(S2): 569-575.
CHEN W, LI X. Model reduction for large rigid-flexible coupling belt conveyor system based on balanced realization[J]. Journal of China Coal Society, 2014, 39(S2): 569-575.(in Chinese)
ZHOU K M, DOYLE J C. Essentials of Robust Control[M]. Upper Saddle River, NJ: Prentice Hall, 1998
高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996.
GAO W B. Theory and Design Method of Variable Structure Control[M]. Beijing: Science Press, 1996.(in Chinese)
刘永凯, 吕福睿, 高世杰, 等. 地基大口径望远镜动态目标跟踪中压电式快速反射镜迟滞效应的补偿[J]. 光学 精密工程, 2022, 30(23): 3081-3089. doi: 10.37188/ope.20223023.3081http://dx.doi.org/10.37188/ope.20223023.3081
LIU Y K, LÜ F R, GAO S J, et al. Compensation of hysteresis effect of piezoelectric fast steering mirror in dynamic target tracking of ground-based large aperture telescope system[J]. Opt. Precision Eng., 2022, 30(23): 3081-3089.(in Chinese). doi: 10.37188/ope.20223023.3081http://dx.doi.org/10.37188/ope.20223023.3081
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构