浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春130033
2.中国科学院大学,北京100049
[ "崔靖凯(1997-),男,山东聊城人,博士研究生,2019年于中国海洋大学获得学士学位,主要从事元启发式优化算法与机器人运动规划方面的研究。E-mail: cuijingkai19@mails.ucas.ac.cn" ]
[ "朱明超(1980-),男,吉林长春人,研究员,2003年、2006年和2009年于吉林大学分别获得学士、硕士和博士学位,主要从事机器人运动学、动力学与控制方面的研究工作。E-mail: mingchaozhu@gmail.com" ]
收稿日期:2023-05-09,
修回日期:2023-07-12,
纸质出版日期:2023-12-25
移动端阅览
崔靖凯,周宇飞,贺顺锋等.基于改进灰狼算法的冗余机械臂轨迹跟踪与避障[J].光学精密工程,2023,31(24):3595-3605.
CUI Jingkai,ZHOU Yufei,HE Shunfeng,et al.Trajectory tracking and obstacle avoidance of a redundant robotic manipulator based on the improved grey wolf optimizer[J].Optics and Precision Engineering,2023,31(24):3595-3605.
崔靖凯,周宇飞,贺顺锋等.基于改进灰狼算法的冗余机械臂轨迹跟踪与避障[J].光学精密工程,2023,31(24):3595-3605. DOI: 10.37188/OPE.20233124.3595.
CUI Jingkai,ZHOU Yufei,HE Shunfeng,et al.Trajectory tracking and obstacle avoidance of a redundant robotic manipulator based on the improved grey wolf optimizer[J].Optics and Precision Engineering,2023,31(24):3595-3605. DOI: 10.37188/OPE.20233124.3595.
本文将冗余机械臂的轨迹跟踪和避障规划统一为优化问题,提出了一种基于改进灰狼算法的避障跟踪优化器。首先,基于包围盒法对避障空间进行了建模,使用GJK算法计算机械臂与障碍物之间的最小距离。其次,设计了适应度函数,引入避障奖励项对优化器进行主动奖励,使机械臂在跟踪目标轨迹的同时避开障碍物。然后,使用随机分散策略对灰狼算法进行了改进,以增强算法的全局搜索能力,从而更好地求解优化问题。最后,使用九自由度冗余机械臂验证了所提出方法的有效性和优越性。实验结果表明:对于圆形目标轨迹,机械臂的末端跟踪误差为0.21 mm;跟踪过程中,机械臂与障碍物的距离不小于70 mm;相比于经典灰狼算法,改进灰狼算法使跟踪精度提高了13%。本文提出的避障跟踪优化器能以毫米级的精度同时满足冗余机械臂的轨迹跟踪和避障任务;改进的灰狼算法能有效提高经典灰狼算法的收敛精度。
In this study, the trajectory tracking and obstacle avoidance of redundant robotic manipulators are unified as an optimization problem, and a trajectory-tracking optimizer with obstacle avoidance capability based on an improved grey wolf optimizer (IGWO) is proposed. First, the obstacle avoidance space is modeled using the bounding box method, and the GJK algorithm is used to calculate the minimum distance between the robotic manipulator and the obstacle. Second, a fitness function is derived, and a reward function for obstacle avoidance is introduced to actively reward the optimizer such that the manipulator can track the target trajectory while avoiding obstacles. Third, the grey wolf optimizer (GWO) is improved using a random dispersion strategy to improve its global search ability and solve optimization problems more accurately. Finally, the effectiveness and superiority of the proposed method were verified using a nine-degree-of-freedom redundant robotic manipulator. The experimental results show that for a circular target trajectory, the tracking error of the robotic manipulator is 0.21 mm. During the tracking process, the distance between the robotic manipulator and obstacle is not shorter than 70 mm. Compared to the GWO, the IGWO improved the tracking accuracy by 13%. The proposed trajectory tracking optimizer can perform the trajectory tracking and obstacle avoidance tasks of redundant robotic manipulators with millimeter-level accuracy; the IGWO can effectively improve the convergence accuracy of the classical GWO.
OMISORE O M , HAN S P , XIONG J , et al . A review on flexible robotic systems for minimally invasive surgery [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems , 2022 , 52 ( 1 ): 631 - 644 . doi: 10.1109/tsmc.2020.3026174 http://dx.doi.org/10.1109/tsmc.2020.3026174
DING X L , WANG Y C , WANG Y B , et al . A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing [J]. Science China Technological Sciences , 2021 , 64 ( 3 ): 462 - 480 . doi: 10.1007/s11431-020-1737-4 http://dx.doi.org/10.1007/s11431-020-1737-4
王文瑞 , 刘克俭 , 顾金麟 , 等 . 有关节约束超冗余机械臂的增益优化轨迹规划 [J]. 光学 精密工程 , 2019 , 27 ( 5 ): 1075 - 1086 . doi: 10.3788/ope.20192705.1075 http://dx.doi.org/10.3788/ope.20192705.1075
WANG W R , LIU K J , GU J L , et al . Gain-optimization trajectory planning method for hyper-redundant manipulator with joint constraints [J]. Opt. Precision Eng. , 2019 , 27 ( 5 ): 1075 - 1086 . (in Chinese) . doi: 10.3788/ope.20192705.1075 http://dx.doi.org/10.3788/ope.20192705.1075
KHAN A H , LI S , LUO X . Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN-based metaheuristic approach [J]. IEEE Transactions on Industrial Informatics , 2020 , 16 ( 7 ): 4670 - 4680 . doi: 10.1109/tii.2019.2941916 http://dx.doi.org/10.1109/tii.2019.2941916
GUO D S , LI A F , CAI J H , et al . Inverse kinematics of redundant manipulators with guaranteed performance [J]. Robotica , 2022 , 40 ( 1 ): 170 - 190 . doi: 10.1017/s026357472100045x http://dx.doi.org/10.1017/s026357472100045x
LOPEZ-FRANCO C , DIAZ D , HERNANDEZ-BARRAGAN J , et al . A metaheuristic optimization approach for trajectory tracking of robot manipulators [J]. Mathematics , 2022 , 10 ( 7 ): 1051 . doi: 10.3390/math10071051 http://dx.doi.org/10.3390/math10071051
ROKBANI N , MIRJALILI S , SLIM M , et al . A beta salp swarm algorithm meta-heuristic for inverse kinematics and optimization [J]. Applied Intelligence , 2022 , 52 ( 9 ): 10493 - 10518 . doi: 10.1007/s10489-021-02831-3 http://dx.doi.org/10.1007/s10489-021-02831-3
姜力 , 周扬 , 孙奎 , 等 . 七自由度冗余机械臂避障控制 [J]. 光学 精密工程 , 2013 , 21 ( 7 ): 1795 - 1802 . doi: 10.3788/ope.20132107.1795 http://dx.doi.org/10.3788/ope.20132107.1795
JIANG L , ZHOU Y , SUN K , et al . Obstacle avoidance control for 7-DOF redundant manipulators [J]. Opt. Precision Eng. , 2013 , 21 ( 7 ): 1795 - 1802 . (in Chinese) . doi: 10.3788/ope.20132107.1795 http://dx.doi.org/10.3788/ope.20132107.1795
AGARWAL D , BHARTI P S . Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots [J]. Applied Soft Computing , 2021 , 107 : 107372 . doi: 10.1016/j.asoc.2021.107372 http://dx.doi.org/10.1016/j.asoc.2021.107372
ZHANG J X , ZHANG J X , ZHANG Q , et al . Obstacle avoidance path planning of space robot based on improved particle swarm optimization [J]. Symmetry , 2022 , 14 ( 5 ): 938 . doi: 10.3390/sym14050938 http://dx.doi.org/10.3390/sym14050938
常宁东 , 冯春 , 程鹏达 , 等 . 基于Bekker理论改进遗传算法的野外路径优化方法研究 [J]. 光学 精密工程 , 2023 , 31 ( 5 ): 767 - 775 . doi: 10.37188/OPE.20233105.0767 http://dx.doi.org/10.37188/OPE.20233105.0767
CHANG N D , FENG C , CHENG P D , et al . Research on off-road path optimization algorithm based on Bekker theory improved genetic algorithm [J]. Opt. Precision Eng. , 2023 , 31 ( 5 ): 767 - 775 . (in Chinese) . doi: 10.37188/OPE.20233105.0767 http://dx.doi.org/10.37188/OPE.20233105.0767
CAMERON S . Enhancing GJK: computing minimum and penetration distances between convex polyhedra [C]. Proceedings of International Conference on Robotics and Automation . 25 - 25 , 1997, Albuquerque, NM, USA. IEEE , 2002: 3112 - 3117 . doi: 10.1109/robot.1997.606761 http://dx.doi.org/10.1109/robot.1997.606761
MIRJALILI S , MIRJALILI S M , LEWIS A . Grey wolf optimizer [J]. Advances in Engineering Software , 2014 , 69 : 46 - 61 . doi: 10.1016/j.advengsoft.2013.12.007 http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
CUI J K , LIU T Y , ZHU M C , et al . Improved team learning-based grey wolf optimizer for optimization tasks and engineering problems [J]. The Journal of Supercomputing , 2023 , 79 ( 10 ): 10864 - 10914 . doi: 10.1007/s11227-022-04930-5 http://dx.doi.org/10.1007/s11227-022-04930-5
CHEN P , PEI J , LU W , et al . A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance [J]. Neurocomputing , 2022 , 497 : 64 - 75 . doi: 10.1016/j.neucom.2022.05.006 http://dx.doi.org/10.1016/j.neucom.2022.05.006
DEB K . An efficient constraint handling method for genetic algorithms [J]. Computer Methods in Applied Mechanics and Engineering , 2000 , 186 ( 2/3/4 ): 311 - 338 . doi: 10.1016/s0045-7825(99)00389-8 http://dx.doi.org/10.1016/s0045-7825(99)00389-8
0
浏览量
759
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构