浏览全部资源
扫码关注微信
昆明理工大学 机电工程学院,云南 昆明 650500
[ "顾文娟(1985-),女,山东人,讲师,博士,研究生导师,2008年于武汉大学获得硕士学位,2011年于武汉大学获得博士学位,主要从事智能制造、图像处理等研究。E-mail: 20110065@kust.edu.cn" ]
[ "阴艳超(1977-),女,河南人,教授,博士生导师,2006年于西华大学获得硕士学位,2009年于西南交通大学获得博士学位,主要从事智能制造、工业大数据和知识工程等方面的研究, E-mail:20090143@kust.edu.cn" ]
收稿日期:2023-04-26,
修回日期:2023-06-23,
纸质出版日期:2023-12-25
移动端阅览
顾文娟,丁灿,魏金等.基于双边滤波MSR与AutoMSRCR融合的低光照图像增强[J].光学精密工程,2023,31(24):3606-3617.
GU Wenjuan,DING Can,WEI Jin,et al.Low-light image enhancement based on the fusion of Bilateral filter MSR and AutoMSRCR[J].Optics and Precision Engineering,2023,31(24):3606-3617.
顾文娟,丁灿,魏金等.基于双边滤波MSR与AutoMSRCR融合的低光照图像增强[J].光学精密工程,2023,31(24):3606-3617. DOI: 10.37188/OPE.20233124.3606.
GU Wenjuan,DING Can,WEI Jin,et al.Low-light image enhancement based on the fusion of Bilateral filter MSR and AutoMSRCR[J].Optics and Precision Engineering,2023,31(24):3606-3617. DOI: 10.37188/OPE.20233124.3606.
针对在低光照环境下拍摄的图像受光照强度的影响而导致图像质量差的问题,本文提出了基于双边滤波的MSR与AutoMSRCR算法融合的低光照图像增强算法。首先,在原始低光照图像的HSV颜色空间中针对V分量使用基于双边滤波MSR算法对亮度通道进行增强,得到保留原有色彩信息的亮度增强图像。然后,将此初始亮度增强图像运用CLAHE算法基于LAB颜色空间进行亮度通道细节增强,得到细节增强的图像。最后,采用AutoMSRCR算法对原始低光照图像进行处理,并与细节增强图像进行加权融合得到最终的增强图像。以UCIQE,AG,SD,IE为评价指标,将经过该算法增强的图像与MSR算法,MSRCR算法,CLAHE算法,改进GAMMA算法等进行比较。结果表明,使用该图像增强算法处理的图像效果最佳,UCIQE达到了0.472 1,AG达到了12.674 2,SD达到了0.263 2,IE达到了7.637 9。增强后的图像色彩信息更加丰富,图像更加清晰,图像对比度更好,图像的边缘纹理信息保留更完整,图像质量更高,本研究为低光照图像增强提供了一种可行方法。
Aiming at the problem that images taken in low-light environments are affected by the strength of illumination, which leads to poor image quality, this study proposes a low-light image enhancement algorithm based on the fusion of bilateral filtering MSR and AutoMSRCR. First, the brightness of the original low-light image is enhanced using the MSR algorithm based on bilateral filtering in HSV color space. As a result, a brightness-enhanced image with the original color information is obtained. Then, the CLAHE algorithm is used to enhance the details of the brightness channel based on the Lab color space, and a detail-enhanced image is obtained. Finally, the AutoMSRCR algorithm is used to process the original low-light image and perform weighted fusion with the detail-enhanced image to obtain the final enhanced image. Using UCIQE, AG, SD, and IE as evaluation indexes, the proposed algorithm outperformed the MSR, MSRCR, CLAHE, and GAMMA algorithms. The results show that the proposed algorithm optimized image quality with UCIQE, AG, SD, and IE reaching values of 0.472 1, 12.674 2, 0.263 2, and 7.637 9, respectively. The obtained image contains more color information, is clearer, the image contrast is natural look, and the edge texture information of the image is more complete. That is, images enhanced by this algorithm are of the highest quality. This study provides a feasible method for low-light image enhancement.
黄滢 , 何自芬 , 杨宏宽 , 等 . 极化自注意力调控的情景式视频实例多尺度分割 [J]. 计算机学报 , 2022 , 45 ( 12 ): 2605 - 2618 . doi: 10.11897/SP.J.1016.2022.02605 http://dx.doi.org/10.11897/SP.J.1016.2022.02605
HUANG Y , HE Z F , YANG H K , et al . Multi-scale segmentation of episodic video instance through polarized self-attention manipulation [J]. Chinese Journal of Computers , 2022 , 45 ( 12 ): 2605 - 2618 . (in Chinese) . doi: 10.11897/SP.J.1016.2022.02605 http://dx.doi.org/10.11897/SP.J.1016.2022.02605
李海岩 . 一种柔性自适应SAR图像目标分割算法 [J]. 现代雷达 , 2019 , 41 ( 4 ): 34 - 38,42 .
LI H Y . A flexible adaptive SAR image target segmentation algorithm [J]. Modern Radar , 2019 , 41 ( 4 ): 34 - 38,42 . (in Chinese)
YANG T T , JIA S W , MA H . Research on the application of super resolution reconstruction algorithm for underwater image [J]. Computers , Materials & Continua, 2020 , 62 ( 3 ): 1249 - 1258 . doi: 10.32604/cmc.2020.05777 http://dx.doi.org/10.32604/cmc.2020.05777
JIANG Y C , ZHAN W D , ZHU D P . Low-illuminance image processing based on brightness channel detail enhancement [J]. Laser & Optoelectronics Progress , 2021 , 58 ( 4 ): 0410001 . doi: 10.3788/lop202158.0410001 http://dx.doi.org/10.3788/lop202158.0410001
王浩 , 张叶 , 沈宏海 , 等 . 图像增强算法综述 [J]. 中国光学 , 2017 , 10 ( 4 ): 438 - 448 . doi: 10.3788/co.20171004.0438 http://dx.doi.org/10.3788/co.20171004.0438
WANG H , ZHANG Y , SHEN H H , et al . Review of image enhancement algorithms [J]. Chinese Journal of Optics , 2017 , 10 ( 4 ): 438 - 448 . (in Chinese) . doi: 10.3788/co.20171004.0438 http://dx.doi.org/10.3788/co.20171004.0438
董丽丽 , 丁畅 , 许文海 . 基于直方图均衡化图像增强的两种改进方法 [J]. 电子学报 , 2018 , 46 ( 10 ): 2367 - 2375 . doi: 10.3969/j.issn.0372-2112.2018.10.009 http://dx.doi.org/10.3969/j.issn.0372-2112.2018.10.009
DONG L L , DING C , XU W H . Two improved methods based on histogram equalization for image enhancement [J]. Acta Electronica Sinica , 2018 , 46 ( 10 ): 2367 - 2375 . (in Chinese) . doi: 10.3969/j.issn.0372-2112.2018.10.009 http://dx.doi.org/10.3969/j.issn.0372-2112.2018.10.009
REDDY E , REDDY R . Dynamic clipped histogram equalization technique for enhancing low contrast images [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences , 2019 , 89 ( 4 ): 673 - 698 . doi: 10.1007/s40010-018-0530-6 http://dx.doi.org/10.1007/s40010-018-0530-6
LAND E H . The retinex theory of color vision [J]. Scientific American , 1977 , 237 ( 6 ): 108 - 28 . doi: 10.1038/scientificamerican1277-108 http://dx.doi.org/10.1038/scientificamerican1277-108
JOBSON D J , RAHMAN Z , WOODELL G A . A multiscale retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Transactions on Image Processing , 1997 , 6 ( 7 ): 965 - 976 . doi: 10.1109/83.597272 http://dx.doi.org/10.1109/83.597272
JOBSON D J . Retinex processing for automatic image enhancement [J]. Journal of Electronic Imaging , 2004 , 13 ( 1 ): 100 . doi: 10.1117/1.1636183 http://dx.doi.org/10.1117/1.1636183
李锦 , 王俊平 , 万国挺 , 等 . 一种结合直方图均衡化和MSRCR的图像增强新算法 [J]. 西安电子科技大学学报 , 2014 , 41 ( 3 ): 103 - 109 .
LI J , WANG J P , WAN G T , et al . Novel algorithm for image enhancement with histogram equalization and MSRCR [J]. Journal of Xidian University , 2014 , 41 ( 3 ): 103 - 109 . (in Chinese)
XUJIA Q , YANFEI C H , YINGLIN F . Image enhancement algorithm based on retinex of trilateral filter in HSV color space [J]. Journal of Chinese Computer Systems , 2016 , 37 ( 1 ): 168 - 72 .
ZHANG S Z , ZHU M L , MENG K . An Automated Multi-Scale Retinex for Dim Image Enhancement [C]. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA) . 21 - 23 , 2022, Shenyang, China. IEEE , 2022: 647 - 651 . doi: 10.1109/icpeca53709.2022.9719125 http://dx.doi.org/10.1109/icpeca53709.2022.9719125
FLORES-VIDAL P , GÓMEZ D , CASTRO J , et al . New aggregation approaches with HSV to color edge detection [J]. International Journal of Computational Intelligence Systems , 2022 , 15 ( 1 ): 78 . doi: 10.1007/s44196-022-00137-x http://dx.doi.org/10.1007/s44196-022-00137-x
LIANG W , LONG J , LI K C , et al . A fast defogging image recognition algorithm based on bilateral hybrid filtering [J]. ACM Transactions on Multimedia Computing, Communications, and Applications , 2021 , 17 ( 2 ): 1 - 16 . doi: 10.1145/3391297 http://dx.doi.org/10.1145/3391297
张驰 , 谭南林 , 李响 , 等 . 基于改进型Retinex算法的雾天图像增强技术 [J]. 北京航空航天大学学报 , 2019 , 45 ( 2 ): 309 - 316 .
ZHANG C , TAN N L , LI X , et al . Foggy image enhancement technology based on improved Retinex algorithm [J]. Journal of Beijing University of Aeronautics and Astronautics , 2019 , 45 ( 2 ): 309 - 316 . (in Chinese)
艾加秋 , 王非凡 , 杨兴明 , 等 . 基于背景匀质性双边滤波的SAR图像斑点噪声抑制算法 [J]. 遥感学报 , 2021 , 25 ( 5 ): 1071 - 1084 . doi: 10.11834/jrs.20210212 http://dx.doi.org/10.11834/jrs.20210212
AI J Q , WANG F F , YANG X M , et al . SAR image speckle noise suppression algorithm based on background homogeneity and bilateral filtering [J]. National Remote Sensing Bulletin , 2021 , 25 ( 5 ): 1071 - 1084 . (in Chinese) . doi: 10.11834/jrs.20210212 http://dx.doi.org/10.11834/jrs.20210212
龚云 , 杨庞彬 , 颉昕宇 . 结合同态滤波与直方图均衡化的井下图像匹配算法 [J]. 工矿自动化 , 2021 , 47 ( 10 ): 37 - 41, 61 . doi: 10.13272/j.issn.1671-251x.2021070018 http://dx.doi.org/10.13272/j.issn.1671-251x.2021070018
GONG Y , YANG P B , JIE X Y . Underground image matching algorithm combining homomorphic filtering and histogram equalization [J]. Industry and Mine Automation , 2021 , 47 ( 10 ): 37 - 41, 61 . (in Chinese) . doi: 10.13272/j.issn.1671-251x.2021070018 http://dx.doi.org/10.13272/j.issn.1671-251x.2021070018
林森 , 迟凯晨 , 李文涛 , 等 . 基于优势特征图像融合的水下光学图像增强 [J]. 光子学报 , 2020 , 49 ( 3 ): 0310003 . doi: 10.3788/gzxb20204903.0310003 http://dx.doi.org/10.3788/gzxb20204903.0310003
LIN S , CHI K C , LI W T , et al . Underwater optical image enhancement based on dominant feature image fusion [J]. Acta Photonica Sinica , 2020 , 49 ( 3 ): 0310003 . (in Chinese) . doi: 10.3788/gzxb20204903.0310003 http://dx.doi.org/10.3788/gzxb20204903.0310003
WANG P , WANG Z W , LV D , et al . Low illumination color image enhancement based on Gabor filtering and Retinex theory [J]. Multimedia Tools and Applications , 2021 , 80 ( 12 ): 17705 - 17719 . doi: 10.1007/s11042-021-10607-7 http://dx.doi.org/10.1007/s11042-021-10607-7
张航瑛 , 王雪琦 , 王华英 , 等 . 基于明度分量的Retinex-Net图像增强改进方法 [J]. 物理学报 , 2022 , 71 ( 11 ): 77 - 85 . doi: 10.7498/aps.71.20220099 http://dx.doi.org/10.7498/aps.71.20220099
ZHANG H Y , WANG X Q , WANG H Y , et al . Advanced Retinex-Net image enhancement method based on value component processing [J]. Acta Physica Sinica , 2022 , 71 ( 11 ): 77 - 85 . (in Chinese) . doi: 10.7498/aps.71.20220099 http://dx.doi.org/10.7498/aps.71.20220099
刘玉红 , 李梓妍 , 王欣 , 等 . 具有颜色保真性的彩色眼底图像增强方法 [J]. 电子科技大学学报 , 2022 , 51 ( 2 ): 290 - 294 . doi: 10.12178/1001-0548.2021298 http://dx.doi.org/10.12178/1001-0548.2021298
LIU Y H , LI Z Y , WANG X , et al . Hue preserving algorithm for color fundus image enhancement method [J]. Journal of University of Electronic Science and Technology of China , 2022 , 51 ( 2 ): 290 - 294 . (in Chinese) . doi: 10.12178/1001-0548.2021298 http://dx.doi.org/10.12178/1001-0548.2021298
YANG M , SOWMYA A . An underwater color image quality evaluation metric [J]. IEEE Transactions on Image Processing , 2015 , 24 ( 12 ): 6062 - 6071 . doi: 10.1109/tip.2015.2491020 http://dx.doi.org/10.1109/tip.2015.2491020
王小芳 , 方登杰 , 何海瑞 , 等 . 基于多尺度细节优化的MSRCR图像去雾算法 [J]. 实验技术与管理 , 2020 , 37 ( 9 ): 92 - 97 .
WANG X F , FANG D J , HE H R , et al . MSRCR image defog algorithm based on multi-scale detail optimization [J]. Experimental Technology and Management , 2020 , 37 ( 9 ): 92 - 97 . (in Chinese)
孙彬 , 高云翔 , 诸葛吴为 , 等 . 可见光与红外图像融合质量评价指标分析 [J]. 中国图象图形学报 , 2023 , 28 ( 1 ): 144 - 155 . doi: 10.11834/jig.210719 http://dx.doi.org/10.11834/jig.210719
SUN B , GAO Y X , ZHUGE W W , et al . Analysis of quality objective assessment metrics for visible and infrared image fusion [J]. Journal of Image and Graphics , 2023 , 28 ( 1 ): 144 - 155 . (in Chinese) . doi: 10.11834/jig.210719 http://dx.doi.org/10.11834/jig.210719
YANCHUN Y , JIAO L I , YANGPING W . Review of image fusion quality evaluation methods [J]. Journal of Frontiers of Computer Science & Technology , 2018 , 12 ( 7 ): 1021 - 1035 .
0
浏览量
456
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构