哈尔滨理工大学 测控技术与通信工程学院,黑龙江 哈尔滨 150080
[ "柳长源(1970-),男,黑龙江哈尔滨人,博士,副教授,硕士生导师,1993年于吉林大学获得理学学士学位,2004年于哈尔滨理工大学获得硕士学位,2013年于哈尔滨工程大学获得博士学位,2016-2017年在美国普渡大学做访问学者,自动化学会会员。研究方向为图像处理、人工智能、模式识别等。E-mail: liuchangyuan@hrbust.edu.cn" ]
扫 描 看 全 文
柳长源,李婷,兰朝凤.细粒度遥感舰船开集识别[J].光学精密工程,2023,31(24):3618-3629.
LIU Changyuan,LI Ting,LAN Chaofeng.Fine-grained remote sensing ship open set recognition[J].Optics and Precision Engineering,2023,31(24):3618-3629.
柳长源,李婷,兰朝凤.细粒度遥感舰船开集识别[J].光学精密工程,2023,31(24):3618-3629. DOI: 10.37188/OPE.20233124.3618.
LIU Changyuan,LI Ting,LAN Chaofeng.Fine-grained remote sensing ship open set recognition[J].Optics and Precision Engineering,2023,31(24):3618-3629. DOI: 10.37188/OPE.20233124.3618.
为了解决传统深度卷积神经网络在舰船图像细粒度分类中的局限性,本文设计了细粒度遥感舰船开集识别模型。首先,引入了基于注意力机制的STN模块,加在特征提取网络前用来过滤背景信息;然后在STN模块后接一个多尺度的并行的卷积结构,强化网络对不同尺度的局部区域的特征提取能力;接着将提取到的特征分别输入基分支和元嵌入分支,用来增大类间方差和减小类内方差,同时强化模型对尾类小样本的学习;最后对两个分支的分类结果进行决策融合,根据设定的阈值判别已知类和未知类进一步对已知类进行细分。在平衡与不平衡分布的FGSCR-42数据集上进行了4种开放度实验,结果表明:在平衡分布的数据集上4种开放度的平均准确率为90.5%,86.3%,85.7%,85.1%,不平衡分布数据集的平均准确率为90.0%,85.1%,84.3%,84.1%。与当前主流的舰船识别方法相比,本文方法分类具有更高的识别准确率和更好的泛化能力。
In this study, a fine-grained remote sensing ship open-set recognition model is designed to address the limitations of traditional deep convolutional neural networks in fine-grained classification of ship images. First, a STN module based on attention mechanism is introduced before the feature extraction network to filter background information. In addition, a multi-scale parallel convolution structure is added after the STN module to enhance the feature extraction ability of the network for local regions of different scales. The extracted features are input into the base and meta-embedded branches, to increase inter-class variance and reduce intra-class variance, strengthening the model's learning of the tail class small samples concomitantly. Finally, the classification results of the two branches are fused; known and unknown classes are distinguished according to the set threshold; and known classes are subdivided. Four types of openness experiments were conducted on the FGSCR-42 datasets with balanced and unbalanced distributions. The results show that the average accuracies of the four types of openness in the balanced distribution dataset are 90.5%, 86.3%, 85.7%, and 85.1%; the corresponding average accuracies of the unbalanced distribution dataset are 90.0%, 85.1%, 84.3%, and 84.1%. Compared with the current mainstream ship recognition methods, the proposed method has higher recognition accuracy and better generalization ability.
注意力机制细粒度分类开集识别决策融合
attention mechanismfine-grained classificationopen set recognitiondecision fusion
杜梅, 李景景. 复杂背景遥感影像中小目标船舶细粒度智能识别[J]. 舰船科学技术, 2021, 43(20): 205-207. doi: 10.3404/j.issn.1672-7649.2021.10A.069http://dx.doi.org/10.3404/j.issn.1672-7649.2021.10A.069
DU M, LI J J. Fine-grained intelligent recognition of small target ships in remote sensing images with complex background[J]. Ship Science and Technology, 2021, 43(20): 205-207.(in Chinese). doi: 10.3404/j.issn.1672-7649.2021.10A.069http://dx.doi.org/10.3404/j.issn.1672-7649.2021.10A.069
刘忻伟, 朴永杰, 郑亮亮, 等. 面向航天光学遥感复杂场景图像的舰船检测[J]. 光学 精密工程, 2023, 31(6): 892-904. doi: 10.37188/OPE.20233106.0892http://dx.doi.org/10.37188/OPE.20233106.0892
LIU X W, PIAO Y J, ZHENG L L, et al. Ship detection for complex scene images of space optical remote sensing[J]. Opt. Precision Eng., 2023, 31(6): 892-904.(in Chinese). doi: 10.37188/OPE.20233106.0892http://dx.doi.org/10.37188/OPE.20233106.0892
肖术明, 张叶, 常旭岭, 等. 面向航天光学遥感场景压缩感知测量值的舰船检测[J]. 光学 精密工程, 2023, 31(4): 517-532. doi: 10.37188/OPE.20233104.0517http://dx.doi.org/10.37188/OPE.20233104.0517
XIAO S M, ZHANG Y, CHANG X L, et al. Ship detection oriented to compressive sensing measurements of space optical remote sensing scenes[J]. Opt. Precision Eng., 2023, 31(4): 517-532.(in Chinese). doi: 10.37188/OPE.20233104.0517http://dx.doi.org/10.37188/OPE.20233104.0517
LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN Models for Fine-Grained Visual Recognition[C]. 2015 IEEE International Conference on Computer Vision (ICCV).7-13, 2015, Santiago, Chile. IEEE, 2016: 1449-1457. doi: 10.1109/iccv.2015.170http://dx.doi.org/10.1109/iccv.2015.170
FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 4476-4484. doi: 10.1109/cvpr.2017.476http://dx.doi.org/10.1109/cvpr.2017.476
CHEN Y, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 5152-5161. doi: 10.1109/cvpr.2019.00530http://dx.doi.org/10.1109/cvpr.2019.00530
KODAMA Y, WANG Y N, KAWAKAMI R, et al. Open-set recognition with supervised contrastive learning[C]. 2021 17th International Conference on Machine Vision and Applications (MVA).25-27, 2021, Aichi, Japan. IEEE, 2021: 1-5. doi: 10.23919/mva51890.2021.9511382http://dx.doi.org/10.23919/mva51890.2021.9511382
DAI W, DIAO W H, SUN X, et al. CAMV: class activation mapping value towards open set fine-grained recognition[J]. IEEE Access, 2021, 9: 8167-8177. doi: 10.1109/access.2021.3049577http://dx.doi.org/10.1109/access.2021.3049577
CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. doi: 10.1109/tpami.2019.2956516http://dx.doi.org/10.1109/tpami.2019.2956516
VENDRAMINI M, OLIVEIRA H, MACHADO A, et al. Opening deep neural networks with generative models[C]. 2021 IEEE International Conference on Image Processing (ICIP).19-22, 2021, Anchorage, AK, USA. IEEE, 2021: 1314-1318. doi: 10.1109/icip42928.2021.9506672http://dx.doi.org/10.1109/icip42928.2021.9506672
YANG Y, HOU C, LANG Y, et al. Open-set human activity recognition based on micro-Doppler signatures[J]. Pattern Recognition, 2019, 85: 60-69. doi: 10.1016/j.patcog.2018.07.030http://dx.doi.org/10.1016/j.patcog.2018.07.030
张婷. 基于注意力机制的图像内容理解与视觉推理算法研究[D]. 成都: 电子科技大学, 2021.
ZHANG T. Research on Image Content Understanding and Visual Reasoning Algorithm Based on Attention Mechanism[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18-23,2018, Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. doi: 10.1109/cvpr.2018.00745http://dx.doi.org/10.1109/cvpr.2018.00745
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).13-19, 2020, Seattle, WA, USA. IEEE, 2020: 11531-11539. doi: 10.1109/cvpr42600.2020.01155http://dx.doi.org/10.1109/cvpr42600.2020.01155
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[M]. Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. doi: 10.1007/978-3-030-01234-2_1http://dx.doi.org/10.1007/978-3-030-01234-2_1
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial Transformer Networks[EB/OL]. 2015: arXiv: 1506.02025. https://arxiv.org/abs/1506.02025.pdfhttps://arxiv.org/abs/1506.02025.pdf. doi: 10.1007/s11263-015-0823-zhttp://dx.doi.org/10.1007/s11263-015-0823-z
ZHANG H L, XU H, LIN T E. Deep open intent classification with adaptive decision boundary[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(16): 14374-14382. doi: 10.1609/aaai.v35i16.17690http://dx.doi.org/10.1609/aaai.v35i16.17690
WEN Y D, ZHANG K P, LI Z F, et al. A Discriminative Feature Learning Approach for Deep Face Recognition[M]. Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 499-515. doi: 10.1007/978-3-319-46478-7_31http://dx.doi.org/10.1007/978-3-319-46478-7_31
XU X W, ZHANG X L, ZHANG T W. Multi-Scale SAR Ship Classification with Convolutional Neural Network[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.11-16, 2021, Brussels, Belgium. IEEE, 2021: 4284-4287. doi: 10.1109/igarss47720.2021.9553116http://dx.doi.org/10.1109/igarss47720.2021.9553116
LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 2532-2541. doi: 10.1109/cvpr.2019.00264http://dx.doi.org/10.1109/cvpr.2019.00264
LUO X, YU Z J, ZHAO Z G, et al. Effective short text classification via the fusion of hybrid features for IoT social data[J]. Digital Communications and Networks, 2022(6): 942-954. doi: 10.1016/j.dcan.2022.09.015http://dx.doi.org/10.1016/j.dcan.2022.09.015
DI Y H, JIANG Z G, ZHANG H P. A public dataset for fine-grained ship classification in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 747. doi: 10.3390/rs13040747http://dx.doi.org/10.3390/rs13040747
GENG C X, HUANG S J, CHEN S C. Recent advances in open set recognition: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614-3631. doi: 10.1109/tpami.2020.2981604http://dx.doi.org/10.1109/tpami.2020.2981604
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构